CS4110

Programming Languages & Logics

Lecture 27
Records and Subtyping

Records

We’ve seen binary products (pairs), and they generalize to n-ary
products (tuples).

Records are a generalization of tuples where we mark each field
with a label.

Records

We’ve seen binary products (pairs), and they generalize to n-ary
products (tuples).

Records are a generalization of tuples where we mark each field
with a label.

Example:
{foo = 32, bar = true}
is a record value with an integer field foo and a boolean field bar.

Records

We’ve seen binary products (pairs), and they generalize to n-ary
products (tuples).

Records are a generalization of tuples where we mark each field
with a label.

Example:
{foo = 32, bar = true}
is a record value with an integer field foo and a boolean field bar.

Its type is:
{foo:int, bar:bool}

Syntax

le L
ex=---|{h=ey....[,=ey}|el
vi=-- [{h=vi,....[h =V}

To=- | {liim, . T}

Dynamic Semantics

E:=..
| {[1 = Vl,...,[,',l = V,',l,[,' = E7[i+1 = e,-+1,...,l,, = e,,}
El

{L=vi,...;LL,=v,}.li = v

Static Semantics

Viel.n [Fe:T
rl_{[1:el,...,ln:en}:{ll:Tl,...,[n:Tn}

rl_ei{[]_:Tl,...,[n:Tn}
Meldi:m

Example

GETX £ \p:{x :int,y : int}. p.x

Example

GETX £ \p:{x :int,y : int}. p.x

GETX {x =4,y =2}

Example

GETX £ \p:{x :int,y : int}. p.x
GETX {x =4,y =2}

GETX {x =4,y =2,z =42}

Example

GETX £ \p:{x :int,y : int}. p.x
GETX {x =4,y =2}
GETX {x =4,y =2,z =42}

GETX {y = 2,x = 4}

Subtyping

Definition (Subtype)

71 is @ subtype of 1, written 7, < 7, if a program can use a value
of type 71 whenever it would use a value of type 7.

If 7 < 75, we also say 7; is the supertype of 1.

Subtyping

Definition (Subtype)

71 is @ subtype of 1, written 7, < 7, if a program can use a value
of type 71 whenever it would use a value of type 7.

If 7 < 75, we also say 7; is the supertype of 1.

Fr-er 7<7

o y SUBSUMPTION
e:r

This typing rule says that if e has type 7 and 7 is a subtype of 7/,
then e also has type 7.

Record Subtyping

We’ll define a new subtyping relation that works together with
the subsumption rule.

1SN

Record Subtyping

This program isn’t well-typed (yet):

(Ap:{x:int}.p.x) {x =4,y =2}

Record Subtyping

This program isn’t well-typed (yet):
(Ap:{x:int}.p.x) {x =4,y =2}

So let’s add width subtyping:

k>0

{11:7_17”-7[n+k:7—n+k} S {[1:7']_,...,[”:7'”}

Record Subtyping

This program also doesn’t get stuck:

(Ap:{x:int,y :int}.p.x+py) {y =37,x =5}

10

Record Subtyping

This program also doesn’t get stuck:
(Ap:{x:int,y :int}.p.x+py) {y =37,x =5}

So we can make it well-typed by adding permutation subtyping:

mis a permutationon 1..n
{[1 IT1, .. ,[,,ZT,,} < {[ﬂ(l) STr(L)s - e s [W(n) ZTW(,,)}

10

Record Subtyping

Does this program get stuck? Is it well-typed?

(Ap:{x:{y:int}}.pxy) {x={y =4,z=2}}

11

Record Subtyping

Does this program get stuck? Is it well-typed?
(Ap:{x:{y:int}}.pxy) {x={y =4,z=2}}

Let’s add depth subtyping:

Viel.un 7<7
{hmy,. by <{b:m, .. 7}

11

Record Subtyping

Putting all three forms of record subtyping together:

Viel.n.3jelm L= AN 5<7

S-RECORD
[l:lla"'a[m:;m < [,:7,,...,[/:7/
1 1 n n

12

Standard Subtyping Rules

We always make the subtyping relation both reflexive and
transitive.

<7, Tm<T3
S-REFL S-TRANS
T<T 71 < T3

Think of every type describing a set of values. Thenm; < 7,
when 7;’s values are a subset of 7’s.

Top Type

It’s sometimes useful to define a maximal type with respect to
subtyping:

Tu=-| T

S-Top

T<T

Everything is a subtype of T, asin Java’s Object or Go’s
interface{}.

14

Subtype All the Things!

We can also write subtyping rules for sums and products:

! /
n<n <7

; - S-Sum
m+n<1n+70

15

Subtype All the Things!

We can also write subtyping rules for sums and products:

71 < 7'{ T < 7'2/
S-PrRoODuUCT

X7 <T XT

Function Types

How should we decide whether one function type is a subtype of
another?

77
S-FUNCTION

n—on<T T

16

Desiderata

We’d like to have:

int — {x:int,y:int} <int — {x:int}

17

Desiderata

We’d like to have:
int — {x:int,y:int} <int — {x:int}
And:

{x:int} — int < {x:int,y:int} — int

17

Desiderata

We’d like to have:

int — {x:int,y:int} <int — {x:int}
And:

{x:int} — int < {x:int,y:int} — int

In general, to prove:
=71 T

we’ll require:
e Argument types are contravariant: 7{ < 7y
e Return types are covariant: 7, < 75

17

Function Subtyping

Putting these two pieces together, we get the subtyping rule for
function types:

/ /
1<t <7

; ; S-FUNCTION
1T <T —T

18

Reference Subtyping

What should the relationship be between 7 and 7’ in order to
have 7 ref < 7’ ref?

19

Example

If ' has type 7’ ref, then !r’ has type 7’.

Imagine we replace r’ with r, where r has a type 7 ref that we’ve
somehow decided is a subtype of 7’ ref.

20

Example

If ' has type 7’ ref, then !r’ has type 7’.

Imagine we replace r’ with r, where r has a type 7 ref that we’ve
somehow decided is a subtype of 7’ ref.

Then !rshould still produce something can be treated asa 7’. In
other words, it should have a type that is a subtype of 7.

So the referent type should be covariant:

/
T<T

7 ref < 7’ ref

Example

If v has type 7/, then r’ := v should be legal.

If we replace r’ with r, then it must still be legal to assign r := v.
So !rwould then produce a value of type 7'.

21

Example

If v has type 7/, then r’ := v should be legal.

If we replace r’ with r, then it must still be legal to assign r := v.
So !rwould then produce a value of type 7'.

So the referent type should be contravariant!

<
7 ref < 7’ ref

21

Reference Subtyping

In fact, subtyping for reference types must be invariant: a
reference type 7 refis a subtype of 7’ ref if and only if 7 < 7" and
7 <7

r<7 <7
S-REF

7 ref < 7' ref

22

Java Arrays

Tragically, Java’s mutable arrays use covariant subtyping!

23

Java Arrays

Tragically, Java’s mutable arrays use covariant subtyping!
Suppose that Cow is a subtype of Animal.
Code that only reads from arrays typechecks:

Animal[] arr = new Cow|[] { new Cow(“Alfonso”) };
Animala = arr|[0];

Java Arrays

Tragically, Java’s mutable arrays use covariant subtyping!
Suppose that Cow is a subtype of Animal.
Code that only reads from arrays typechecks:

Animal[] arr = new Cow|[] { new Cow(“Alfonso”) };
Animala = arr|[0];

but writing to the array can get into trouble:
arr[0] = new Animal(“Brunhilda”);

Specifically, this generates an ArrayStoreException.

