

CS 4110

Programming Languages & Logics

Lecture 27
Records and Subtyping

Records

We’ve seen binary products (pairs), and they generalize to n‑ary
products (tuples).

Records are a generalization of tuples where wemark each field
with a label.

Example:
{foo = 32, bar = true}

is a record value with an integer field foo and a boolean field bar.

Its type is:
{foo : int, bar :bool}

2

Records

We’ve seen binary products (pairs), and they generalize to n‑ary
products (tuples).

Records are a generalization of tuples where wemark each field
with a label.

Example:
{foo = 32, bar = true}

is a record value with an integer field foo and a boolean field bar.

Its type is:
{foo : int, bar :bool}

2

Records

We’ve seen binary products (pairs), and they generalize to n‑ary
products (tuples).

Records are a generalization of tuples where wemark each field
with a label.

Example:
{foo = 32, bar = true}

is a record value with an integer field foo and a boolean field bar.

Its type is:
{foo : int, bar :bool}

2

Syntax

l ∈ L

e ::= · · · | {l1 = e1, . . . , ln = en} | e.l

v ::= · · · | {l1 = v1, . . . , ln = vn}

τ ::= · · · | {l1 :τ1, . . . , ln :τn}

3

Dynamic Semantics

E ::= . . .

| {l1 = v1, . . . , li−1 = vi−1, li = E, li+1 = ei+1, . . . , ln = en}
| E.l

{l1 = v1, . . . , ln = vn}.li → vi

4

Static Semantics

∀i ∈ 1..n. Γ ⊢ ei :τi
Γ ⊢ {l1 = e1, . . . , ln = en} :{l1 :τ1, . . . , ln :τn}

Γ ⊢ e :{l1 :τ1, . . . , ln :τn}
Γ ⊢ e.li :τi

5

Example

GETX ≜ λp :{x : int, y : int}. p.x

GETX {x = 4, y = 2}

GETX {x = 4, y = 2, z = 42}

GETX {y = 2, x = 4}

6

Example

GETX ≜ λp :{x : int, y : int}. p.x

GETX {x = 4, y = 2}

GETX {x = 4, y = 2, z = 42}

GETX {y = 2, x = 4}

6

Example

GETX ≜ λp :{x : int, y : int}. p.x

GETX {x = 4, y = 2}

GETX {x = 4, y = 2, z = 42}

GETX {y = 2, x = 4}

6

Example

GETX ≜ λp :{x : int, y : int}. p.x

GETX {x = 4, y = 2}

GETX {x = 4, y = 2, z = 42}

GETX {y = 2, x = 4}

6

Subtyping

Definition (Subtype)
τ1 is a subtype of τ2, written τ1 ≤ τ2, if a program can use a value
of type τ1 whenever it would use a value of type τ2.

If τ1 ≤ τ2, we also say τ2 is the supertype of τ1.

Γ ⊢ e :τ τ ≤ τ ′

Γ ⊢ e :τ ′
SUBSUMPTiON

This typing rule says that if e has type τ and τ is a subtype of τ ′,
then e also has type τ ′.

7

Subtyping

Definition (Subtype)
τ1 is a subtype of τ2, written τ1 ≤ τ2, if a program can use a value
of type τ1 whenever it would use a value of type τ2.

If τ1 ≤ τ2, we also say τ2 is the supertype of τ1.

Γ ⊢ e :τ τ ≤ τ ′

Γ ⊢ e :τ ′
SUBSUMPTiON

This typing rule says that if e has type τ and τ is a subtype of τ ′,
then e also has type τ ′.

7

Record Subtyping

We’ll define a new subtyping relation that works together with
the subsumption rule.

τ1 ≤ τ2

8

Record Subtyping

This program isn’t well‑typed (yet):

(λp :{x : int}. p.x) {x = 4, y = 2}

So let’s add width subtyping:

k ≥ 0
{l1 :τ1, . . . , ln+k :τn+k} ≤ {l1 :τ1, . . . , ln :τn}

9

Record Subtyping

This program isn’t well‑typed (yet):

(λp :{x : int}. p.x) {x = 4, y = 2}

So let’s add width subtyping:

k ≥ 0
{l1 :τ1, . . . , ln+k :τn+k} ≤ {l1 :τ1, . . . , ln :τn}

9

Record Subtyping

This program also doesn’t get stuck:

(λp :{x : int, y : int}. p.x+ p.y) {y = 37, x = 5}

So we canmake it well‑typed by adding permutation subtyping:

π is a permutation on 1..n
{l1 :τ1, . . . , ln :τn} ≤ {lπ(1) :τπ(1), . . . , lπ(n) :τπ(n)}

10

Record Subtyping

This program also doesn’t get stuck:

(λp :{x : int, y : int}. p.x+ p.y) {y = 37, x = 5}

So we canmake it well‑typed by adding permutation subtyping:

π is a permutation on 1..n
{l1 :τ1, . . . , ln :τn} ≤ {lπ(1) :τπ(1), . . . , lπ(n) :τπ(n)}

10

Record Subtyping

Does this program get stuck? Is it well‑typed?

(λp :{x : {y : int}}. p.x.y) {x = {y = 4, z = 2}}

Let’s add depth subtyping:

∀i ∈ 1..n. τi ≤ τ ′i
{l1 :τ1, . . . , ln :τn} ≤ {l1 :τ ′1, . . . , ln :τ ′n}

11

Record Subtyping

Does this program get stuck? Is it well‑typed?

(λp :{x : {y : int}}. p.x.y) {x = {y = 4, z = 2}}

Let’s add depth subtyping:

∀i ∈ 1..n. τi ≤ τ ′i
{l1 :τ1, . . . , ln :τn} ≤ {l1 :τ ′1, . . . , ln :τ ′n}

11

Record Subtyping

Putting all three forms of record subtyping together:

∀i ∈ 1..n. ∃j ∈ 1..m. l′i = lj ∧ τj ≤ τ ′i
{l1 :τ1, . . . , lm :τm} ≤ {l′1 :τ ′1, . . . , l′n :τ ′n}

S‑RECORD

12

Standard Subtyping Rules

We always make the subtyping relation both reflexive and
transitive.

τ ≤ τ
S‑REFL

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3
S‑TRANS

Think of every type describing a set of values. Then τ1 ≤ τ2
when τ1’s values are a subset of τ2’s.

13

Top Type

It’s sometimes useful to define amaximal type with respect to
subtyping:

τ ::= · · · | ⊤

τ ≤ ⊤
S‑TOP

Everything is a subtype of⊤, as in Java’s Object or Go’s
interface{}.

14

Subtype All the Things!

We can also write subtyping rules for sums and products:

τ1 ≤ τ ′1 τ2 ≤ τ ′2
τ1 + τ2 ≤ τ ′1 + τ ′2

S‑SUM

τ1 ≤ τ ′1 τ2 ≤ τ ′2
τ1 × τ2 ≤ τ ′1 × τ ′2

S‑PRODUCT

15

Subtype All the Things!

We can also write subtyping rules for sums and products:

τ1 ≤ τ ′1 τ2 ≤ τ ′2
τ1 + τ2 ≤ τ ′1 + τ ′2

S‑SUM

τ1 ≤ τ ′1 τ2 ≤ τ ′2
τ1 × τ2 ≤ τ ′1 × τ ′2

S‑PRODUCT

15

Function Types

How should we decide whether one function type is a subtype of
another?

???

τ1 → τ2 ≤ τ ′1 → τ ′2
S‑FUNCTiON

16

Desiderata

We’d like to have:

int → {x : int, y : int} ≤ int → {x : int}

And:

{x : int} → int ≤ {x : int, y : int} → int

In general, to prove:

τ1 → τ2 ≤ τ ′1 → τ ′2

we’ll require:
• Argument types are contravariant: τ ′1 ≤ τ1
• Return types are covariant: τ2 ≤ τ ′2

17

Desiderata

We’d like to have:

int → {x : int, y : int} ≤ int → {x : int}

And:

{x : int} → int ≤ {x : int, y : int} → int

In general, to prove:

τ1 → τ2 ≤ τ ′1 → τ ′2

we’ll require:
• Argument types are contravariant: τ ′1 ≤ τ1
• Return types are covariant: τ2 ≤ τ ′2

17

Desiderata

We’d like to have:

int → {x : int, y : int} ≤ int → {x : int}

And:

{x : int} → int ≤ {x : int, y : int} → int

In general, to prove:

τ1 → τ2 ≤ τ ′1 → τ ′2

we’ll require:
• Argument types are contravariant: τ ′1 ≤ τ1
• Return types are covariant: τ2 ≤ τ ′2

17

Function Subtyping

Putting these two pieces together, we get the subtyping rule for
function types:

τ ′1 ≤ τ1 τ2 ≤ τ ′2
τ1 → τ2 ≤ τ ′1 → τ ′2

S‑FUNCTiON

18

Reference Subtyping

What should the relationship be between τ and τ ′ in order to
have τ ref ≤ τ ′ ref?

19

Example

If r′ has type τ ′ ref, then !r′ has type τ ′.

Imagine we replace r′ with r, where r has a type τ ref that we’ve
somehow decided is a subtype of τ ′ ref.

Then !r should still produce something can be treated as a τ ′. In
other words, it should have a type that is a subtype of τ ′.

So the referent type should be covariant:

τ ≤ τ ′

τ ref ≤ τ ′ ref

20

Example

If r′ has type τ ′ ref, then !r′ has type τ ′.

Imagine we replace r′ with r, where r has a type τ ref that we’ve
somehow decided is a subtype of τ ′ ref.

Then !r should still produce something can be treated as a τ ′. In
other words, it should have a type that is a subtype of τ ′.

So the referent type should be covariant:

τ ≤ τ ′

τ ref ≤ τ ′ ref

20

Example

If v has type τ ′, then r′ := v should be legal.

If we replace r′ with r, then it must still be legal to assign r := v.
So !rwould then produce a value of type τ ′.

So the referent type should be contravariant!

τ ′ ≤ τ

τ ref ≤ τ ′ ref

21

Example

If v has type τ ′, then r′ := v should be legal.

If we replace r′ with r, then it must still be legal to assign r := v.
So !rwould then produce a value of type τ ′.

So the referent type should be contravariant!

τ ′ ≤ τ

τ ref ≤ τ ′ ref

21

Reference Subtyping

In fact, subtyping for reference types must be invariant: a
reference type τ ref is a subtype of τ ′ ref if and only if τ ≤ τ ′ and
τ ′ ≤ τ .

τ ≤ τ ′ τ ′ ≤ τ

τ ref ≤ τ ′ ref
S‑REF

22

Java Arrays

Tragically, Java’s mutable arrays use covariant subtyping!

Suppose that Cow is a subtype of Animal.

Code that only reads from arrays typechecks:

Animal[] arr = new Cow[] { new Cow(“Alfonso”) };
Animal a = arr[0];

but writing to the array can get into trouble:

arr[0] = new Animal(“Brunhilda”);

Specifically, this generates an ArrayStoreException.

23

Java Arrays

Tragically, Java’s mutable arrays use covariant subtyping!

Suppose that Cow is a subtype of Animal.

Code that only reads from arrays typechecks:

Animal[] arr = new Cow[] { new Cow(“Alfonso”) };
Animal a = arr[0];

but writing to the array can get into trouble:

arr[0] = new Animal(“Brunhilda”);

Specifically, this generates an ArrayStoreException.

23

Java Arrays

Tragically, Java’s mutable arrays use covariant subtyping!

Suppose that Cow is a subtype of Animal.

Code that only reads from arrays typechecks:

Animal[] arr = new Cow[] { new Cow(“Alfonso”) };
Animal a = arr[0];

but writing to the array can get into trouble:

arr[0] = new Animal(“Brunhilda”);

Specifically, this generates an ArrayStoreException.

23

