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Recursive Types

Many languages support data types that refer to themselves:

Java
class Tree {

Tree leftChild, rightChild;
int data;

}

OCaml
type tree = Leaf | Node of tree * tree * int

λ‑calculus?
tree = unit+ int× tree× tree
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Recursive Type Equations

Wewould like tree to be a solution of the equation:

α = unit+ int× α× α

However, no such solution exists with the types we have so far...
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Unwinding Equations
We could unwind the equation:

α=unit+ int× α× α

=unit+ int×
(unit+ int× α× α)×
(unit+ int× α× α)

=unit+ int×
(unit+ int×

(unit+ int× α× α)×
(unit+ int× α× α))×

(unit+ int×
(unit+ int× α× α)×
(unit+ int× α× α))

= · · ·

If we take the limit of this process, we have an infinite tree.
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Infinite Types

Think of this as an infinite labeled graph whose nodes are
labeled with the type constructors×,+, int, and unit.

This infinite tree is a solution of our equation, and this is what
we take as the type tree.
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µ Types

We’ll specify potentially‑infinite solutions to type equations
using a finite syntax based on the fixed‑point type constructor µ.

µα. τ

Here’s a tree type satisfying our original equation:

tree ≜ µα.unit+ int× α× α.
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Static Semantics (Equirecursive)

We’ll define two treatments of recursive types. With
equirecursive types, a recursive type is equal to its unfolding:

µα. τ is a solution to α = τ , so:

µα. τ = τ{µα. τ/α}

Two typing rules let us switch between folded and unfolded:

Γ ⊢ e : τ{µα. τ/α}
Γ ⊢ e : µα. τ

µ‑iNTRO

Γ ⊢ e : µα. τ

Γ ⊢ e : τ{µα. τ/α}
µ‑ELiM
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Isorecursive Types

Alternatively, isorecursive types avoid infinite type trees.

The type µα. τ is distinct but transformable to and from
τ{µα. τ/α}.

Converting between the two uses explicit fold and unfold
operations:

unfoldµα. τ : µα. τ → τ{µα. τ/α}
foldµα. τ : τ{µα. τ/α} → µα. τ
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Static Semantics (Isorecursive)

The typing rules introduce and eliminate µ‑types:

Γ ⊢ e : τ{µα. τ/α}
Γ ⊢ fold e : µα. τ

µ‑iNTRO

Γ ⊢ e : µα. τ

Γ ⊢ unfold e : τ{µα. τ/α}
µ‑ELiM
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Dynamic Semantics

We also need to augment the operational semantics:

unfold (fold e) → e

Intuitively, to access data in a recursive type µα. τ , we need to
unfold it first. And the only way that values of type µα. τ could
have been created is via fold.
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Example

Here’s a recursive type for lists of numbers:

intlist ≜ µα.unit+ int× α.

Here’s how to add up the elements of an intlist:

let sum =
fix (λf : intlist → intlist

λl : intlist. case unfold ℓ of
(λu : unit. 0)

| (λp : int× intlist. (#1 p) + f (#2 p)))
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Encoding Numbers

Recursive types let us encode the natural numbers!

A natural number is either 0 or the successor of a natural
number:

nat ≜ µα.unit+ α

0 ≜ fold (inlunit+nat ())

1 ≜ fold (inrunit+nat 0)
2 ≜ fold (inrunit+nat 1),
...

The successor function has type nat → nat:

(λx : nat. fold (inrunit+nat x))
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Self‑Application andΩ

RecallΩ defined as:

ω ≜ λx. x x Ω ≜ ω ω.

Ωwas impossible to type... until now!

x is a function. Let’s say it has the type σ → τ .

x is used as the argument to this function, so it must have type σ.

So let’s write a type equation:

σ = σ → τ
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Self‑Application andΩ

Putting these pieces together, the fully typed ω term is:

ω ≜ λx : µα. (α → τ). (unfold x) x

The type of ω is (µα. (α → τ)) → τ .

So the type of fold ω is µα. (α → τ).

Now we can defineΩ = ω (fold ω). It has type τ .
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Self‑Application andΩ

We can even write ω in OCaml:

# type u = Fold of (u -> u);;
type u = Fold of (u -> u)
# let omega = fun x -> match x with Fold f -> f x;;
val omega : u -> u = <fun>
# omega (Fold omega);;
...runs forever until you hit control-c
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Encoding λ‑Calculus

With recursive types, we can type everything in the untyped
lambda calculus!

Every λ‑term can be applied as a function to any other λ‑term.
So let’s define an “untyped” type:

U ≜ µα. α → α

The full translation is:

[[x]] ≜ x
[[e0 e1]] ≜ (unfold [[e0]]) [[e1]]
[[λx. e]] ≜ fold λx : U. [[e]]

Every untyped termmaps to a term of type U.
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