

CS 4110

Programming Languages & Logics

Lecture 25
Type Inference

Review: Polymorphic λ‑Calculus

Syntax

e ::= n | x | λx :τ. e | e1 e2 | Λα. e | e [τ]
v ::= n | λx :τ. e | Λα. e

Dynamic Semantics

E ::= [·] | E e | v E | E [τ]

e → e′

E[e] → E[e′] (λx :τ. e) v → e{v/x} (Λα. e) [τ] → e{τ/α}

2

Review: Polymorphic λ‑Calculus

∆, Γ ` n : int
Γ(x) = τ

∆, Γ ` x :τ

∆, Γ, x :τ ` e :τ ′ ∆ ` τ ok
∆, Γ ` λx :τ. e :τ → τ ′

∆, Γ ` e1 :τ → τ ′ ∆, Γ ` e2 :τ
∆, Γ ` e1 e2 :τ ′

∆ ∪ {α}, Γ ` e :τ
∆, Γ ` Λα. e :∀α. τ

∆, Γ ` e :∀α. τ ′ ∆ ` τ ok
∆, Γ ` e [τ] :τ ′{τ/α}

3

Review: Polymorphic λ‑Calculus

Polymorphism let us write a doubling function that works for
any type of function:

double ≜ Λα. λf :α → α. λx :α. f (f x).

The type of this expression is:

∀α. (α → α) → α → α

You can use the polymorphic function by providing a type:

double [int] (λn : int. n+ 1) 7

4

Type Inference

In languages like OCaml, programmers don’t have to annotate
their programs with ∀α. τ or e [τ].

5

Type Inference

In languages like OCaml, programmers don’t have to annotate
their programs with ∀α. τ or e [τ].

For example, we can write:

let double f x = f (f x)

and OCaml will figure out that the type is:

('a → 'a) → 'a → 'a

which is equivalent to the same System F type:
∀A. (A → A) → A → A

5

Type Inference

In languages like OCaml, programmers don’t have to annotate
their programs with ∀α. τ or e [τ].

We can also write

double (fun x → x+1) 7

and OCaml will infer that the polymorphic function double is
instantiated at the type int.

5

Type Inference, Formally

The type inference (or type reconstruction) problem asks
whether, for a given untyped λ‑calculus expression e′ there
exists a well‑typed System F expression e such that erase(e) = e′

It was shown to be undecidable by Wells in 1994.

6

Type Inference, Formally

The type inference (or type reconstruction) problem asks
whether, for a given untyped λ‑calculus expression e′ there
exists a well‑typed System F expression e such that erase(e) = e′

It was shown to be undecidable by Wells in 1994.

6

ML Polymorphism

Polymorphism in OCaml (and other MLs) has some restrictions
to ensure that type inference remains decidable.

These restrictions, called prenex polymorphism, stipulate that ∀s
may only appear in the “outermost” position.

Examples

• Prenex: ∀α. α → α

• Not prenex: (∀α. α → α) → int

These restrictions have the following practical ramifications:
• Can’t instantiate type variables with polymorphic types
• Can’t put a polymorphic type on the left of an arrow

7

ML Polymorphism

Polymorphism in OCaml (and other MLs) has some restrictions
to ensure that type inference remains decidable.

These restrictions, called prenex polymorphism, stipulate that ∀s
may only appear in the “outermost” position.

Examples

• Prenex: ∀α. α → α

• Not prenex: (∀α. α → α) → int

These restrictions have the following practical ramifications:
• Can’t instantiate type variables with polymorphic types
• Can’t put a polymorphic type on the left of an arrow

7

ML Polymorphism

Polymorphism in OCaml (and other MLs) has some restrictions
to ensure that type inference remains decidable.

These restrictions, called prenex polymorphism, stipulate that ∀s
may only appear in the “outermost” position.

Examples
• Prenex: ∀α. α → α

• Not prenex: (∀α. α → α) → int

These restrictions have the following practical ramifications:
• Can’t instantiate type variables with polymorphic types
• Can’t put a polymorphic type on the left of an arrow

7

ML Polymorphism

Polymorphism in OCaml (and other MLs) has some restrictions
to ensure that type inference remains decidable.

These restrictions, called prenex polymorphism, stipulate that ∀s
may only appear in the “outermost” position.

Examples
• Prenex: ∀α. α → α

• Not prenex: (∀α. α → α) → int

These restrictions have the following practical ramifications:
• Can’t instantiate type variables with polymorphic types
• Can’t put a polymorphic type on the left of an arrow

7

ML Polymorphism

Polymorphism in OCaml (and other MLs) has some restrictions
to ensure that type inference remains decidable.

These restrictions, called prenex polymorphism, stipulate that ∀s
may only appear in the “outermost” position.

Examples
• Prenex: ∀α. α → α

• Not prenex: (∀α. α → α) → int

These restrictions have the following practical ramifications:
• Can’t instantiate type variables with polymorphic types
• Can’t put a polymorphic type on the left of an arrow

7

Example

These restrictions mean that certain terms that are typeable in
System F are not typeable in ML!

OCaml version 4.01.0

fun x -> x x;;
Error: This expression has type 'a -> 'b

but an expression was expected of type 'a
The type variable 'a occurs inside 'a -> 'b

8

Example

These restrictions mean that certain terms that are typeable in
System F are not typeable in ML!

OCaml version 4.01.0

fun x -> x x;;
Error: This expression has type 'a -> 'b

but an expression was expected of type 'a
The type variable 'a occurs inside 'a -> 'b

8

Type Inference

Type inference may be undecidable for the polymorphic
λ‑calculus and OCaml, but it is possible for the simply‑tpyed
λ‑calculus!

Type inference for the STLCmeans guessing a τ in every
abstraction in an untyped version:

λx. e

to produce a typed program:

λx :τ. e

that we can use in the typing rule for functions.

9

Type Inference

Type inference may be undecidable for the polymorphic
λ‑calculus and OCaml, but it is possible for the simply‑tpyed
λ‑calculus!

Type inference for the STLCmeans guessing a τ in every
abstraction in an untyped version:

λx. e

to produce a typed program:

λx :τ. e

that we can use in the typing rule for functions.

9

Example

Here’s an untyped program:
λa. λb. λc. if a (b+ 1) then b else c

Informal inference:

• bmust be int
• amust be some kind of function
• the argument type of amust be the same as b+ 1
• the result type of amust be bool
• the type of cmust be the same as b

Putting all these pieces together:
λa : int → bool. λb : int. λc : int. if a (b+ 1) then b else c

10

Example

Here’s an untyped program:
λa. λb. λc. if a (b+ 1) then b else c

Informal inference:

• bmust be int
• amust be some kind of function
• the argument type of amust be the same as b+ 1
• the result type of amust be bool
• the type of cmust be the same as b

Putting all these pieces together:
λa : int → bool. λb : int. λc : int. if a (b+ 1) then b else c

10

Example

Here’s an untyped program:
λa. λb. λc. if a (b+ 1) then b else c

Informal inference:
• bmust be int

• amust be some kind of function
• the argument type of amust be the same as b+ 1
• the result type of amust be bool
• the type of cmust be the same as b

Putting all these pieces together:
λa : int → bool. λb : int. λc : int. if a (b+ 1) then b else c

10

Example

Here’s an untyped program:
λa. λb. λc. if a (b+ 1) then b else c

Informal inference:
• bmust be int
• amust be some kind of function

• the argument type of amust be the same as b+ 1
• the result type of amust be bool
• the type of cmust be the same as b

Putting all these pieces together:
λa : int → bool. λb : int. λc : int. if a (b+ 1) then b else c

10

Example

Here’s an untyped program:
λa. λb. λc. if a (b+ 1) then b else c

Informal inference:
• bmust be int
• amust be some kind of function
• the argument type of amust be the same as b+ 1

• the result type of amust be bool
• the type of cmust be the same as b

Putting all these pieces together:
λa : int → bool. λb : int. λc : int. if a (b+ 1) then b else c

10

Example

Here’s an untyped program:
λa. λb. λc. if a (b+ 1) then b else c

Informal inference:
• bmust be int
• amust be some kind of function
• the argument type of amust be the same as b+ 1
• the result type of amust be bool

• the type of cmust be the same as b

Putting all these pieces together:
λa : int → bool. λb : int. λc : int. if a (b+ 1) then b else c

10

Example

Here’s an untyped program:
λa. λb. λc. if a (b+ 1) then b else c

Informal inference:
• bmust be int
• amust be some kind of function
• the argument type of amust be the same as b+ 1
• the result type of amust be bool
• the type of cmust be the same as b

Putting all these pieces together:
λa : int → bool. λb : int. λc : int. if a (b+ 1) then b else c

10

Example

Here’s an untyped program:
λa. λb. λc. if a (b+ 1) then b else c

Informal inference:
• bmust be int
• amust be some kind of function
• the argument type of amust be the same as b+ 1
• the result type of amust be bool
• the type of cmust be the same as b

Putting all these pieces together:
λa : int → bool. λb : int. λc : int. if a (b+ 1) then b else c

10

Constriant‑Based Inference

Let’s automate type inference!

We introduce a new judgment:

Γ ` e :τ | C

Given a typing context Γ and an expression e, it generates a set
of constraints—equations between types.

If these constraints are solvable, then e can be well‑typed in Γ.

A solution to a set of constraints is a type substitution σ that, for
each equation, makes both sides syntactically equal.

11

Constriant‑Based Inference

Let’s automate type inference!

We introduce a new judgment:

Γ ` e :τ | C

Given a typing context Γ and an expression e, it generates a set
of constraints—equations between types.

If these constraints are solvable, then e can be well‑typed in Γ.

A solution to a set of constraints is a type substitution σ that, for
each equation, makes both sides syntactically equal.

11

Constriant‑Based Inference

Let’s automate type inference!

We introduce a new judgment:

Γ ` e :τ | C

Given a typing context Γ and an expression e, it generates a set
of constraints—equations between types.

If these constraints are solvable, then e can be well‑typed in Γ.

A solution to a set of constraints is a type substitution σ that, for
each equation, makes both sides syntactically equal.

11

STLC for Type Inference

Let’s define the type inference judgment for this STLC language:

e ::= x | λx :τ. e | e1 e2 | n | e1 + e2
τ ::= int | X | τ1 → τ2

You can use a type variable Xwherever you want to have a type
inferred.

12

Constraint‑Based Typing Judgment

Γ(x) = τ

Γ ` x :τ | ∅
CT‑VAR

Γ ` n : int | ∅
CT‑INT

Γ ` e1 :τ1 | C1 Γ ` e2 :τ2 | C2

Γ ` e1 + e2 : int | C1 ∪ C2 ∪ {τ1 = int, τ2 = int}
CT‑ADD

Γ, x :τ1 ` e :τ2 | C
Γ ` λx :τ1. e :τ1 → τ2 | C

CT‑ABS

Γ ` e1 :τ1 | C1 Γ ` e2 :τ2 | C2

X fresh C′ = C1 ∪ C2 ∪ {τ1 = τ2 → X}
Γ ` e1 e2 :X | C′ CT‑APP

13

Constraint‑Based Typing Judgment

Γ(x) = τ

Γ ` x :τ | ∅
CT‑VAR

Γ ` n : int | ∅
CT‑INT

Γ ` e1 :τ1 | C1 Γ ` e2 :τ2 | C2

Γ ` e1 + e2 : int | C1 ∪ C2 ∪ {τ1 = int, τ2 = int}
CT‑ADD

Γ, x :τ1 ` e :τ2 | C
Γ ` λx :τ1. e :τ1 → τ2 | C

CT‑ABS

Γ ` e1 :τ1 | C1 Γ ` e2 :τ2 | C2

X fresh C′ = C1 ∪ C2 ∪ {τ1 = τ2 → X}
Γ ` e1 e2 :X | C′ CT‑APP

13

Constraint‑Based Typing Judgment

Γ(x) = τ

Γ ` x :τ | ∅
CT‑VAR

Γ ` n : int | ∅
CT‑INT

Γ ` e1 :τ1 | C1 Γ ` e2 :τ2 | C2

Γ ` e1 + e2 : int | C1 ∪ C2 ∪ {τ1 = int, τ2 = int}
CT‑ADD

Γ, x :τ1 ` e :τ2 | C
Γ ` λx :τ1. e :τ1 → τ2 | C

CT‑ABS

Γ ` e1 :τ1 | C1 Γ ` e2 :τ2 | C2

X fresh C′ = C1 ∪ C2 ∪ {τ1 = τ2 → X}
Γ ` e1 e2 :X | C′ CT‑APP

13

Constraint‑Based Typing Judgment

Γ(x) = τ

Γ ` x :τ | ∅
CT‑VAR

Γ ` n : int | ∅
CT‑INT

Γ ` e1 :τ1 | C1 Γ ` e2 :τ2 | C2

Γ ` e1 + e2 : int | C1 ∪ C2 ∪ {τ1 = int, τ2 = int}
CT‑ADD

Γ, x :τ1 ` e :τ2 | C
Γ ` λx :τ1. e :τ1 → τ2 | C

CT‑ABS

Γ ` e1 :τ1 | C1 Γ ` e2 :τ2 | C2

X fresh C′ = C1 ∪ C2 ∪ {τ1 = τ2 → X}
Γ ` e1 e2 :X | C′ CT‑APP

13

Constraint‑Based Typing Judgment

Γ(x) = τ

Γ ` x :τ | ∅
CT‑VAR

Γ ` n : int | ∅
CT‑INT

Γ ` e1 :τ1 | C1 Γ ` e2 :τ2 | C2

Γ ` e1 + e2 : int | C1 ∪ C2 ∪ {τ1 = int, τ2 = int}
CT‑ADD

Γ, x :τ1 ` e :τ2 | C
Γ ` λx :τ1. e :τ1 → τ2 | C

CT‑ABS

Γ ` e1 :τ1 | C1 Γ ` e2 :τ2 | C2

X fresh C′ = C1 ∪ C2 ∪ {τ1 = τ2 → X}
Γ ` e1 e2 :X | C′ CT‑APP

13

Solving Constraints

A type substitution is a finite map from type variables to types.

Example: The substitution

[X 7→ int, Y 7→ int → int]

maps type variable X to int and Y to int → int.

14

Type Substitution

We can define substitution of type variables formally:

σ(X) ≜
{
τ if X 7→ τ ∈ σ

X if X not in the domain of σ

σ(int) ≜ int
σ(τ → τ ′) ≜ σ(τ) → σ(τ ′)

We don’t need to worry about avoiding variable capture: all type
variables are “free.”

Given two substitutions σ1 and σ2, we write σ1 ◦ σ2 for their
composition: (σ1 ◦ σ2)(τ) = σ1(σ2(τ)).

15

Type Substitution

We can define substitution of type variables formally:

σ(X) ≜
{
τ if X 7→ τ ∈ σ

X if X not in the domain of σ

σ(int) ≜ int
σ(τ → τ ′) ≜ σ(τ) → σ(τ ′)

We don’t need to worry about avoiding variable capture: all type
variables are “free.”

Given two substitutions σ1 and σ2, we write σ1 ◦ σ2 for their
composition: (σ1 ◦ σ2)(τ) = σ1(σ2(τ)).

15

Type Substitution

We can define substitution of type variables formally:

σ(X) ≜
{
τ if X 7→ τ ∈ σ

X if X not in the domain of σ

σ(int) ≜ int

σ(τ → τ ′) ≜ σ(τ) → σ(τ ′)

We don’t need to worry about avoiding variable capture: all type
variables are “free.”

Given two substitutions σ1 and σ2, we write σ1 ◦ σ2 for their
composition: (σ1 ◦ σ2)(τ) = σ1(σ2(τ)).

15

Type Substitution

We can define substitution of type variables formally:

σ(X) ≜
{
τ if X 7→ τ ∈ σ

X if X not in the domain of σ

σ(int) ≜ int
σ(τ → τ ′) ≜ σ(τ) → σ(τ ′)

We don’t need to worry about avoiding variable capture: all type
variables are “free.”

Given two substitutions σ1 and σ2, we write σ1 ◦ σ2 for their
composition: (σ1 ◦ σ2)(τ) = σ1(σ2(τ)).

15

Type Substitution

We can define substitution of type variables formally:

σ(X) ≜
{
τ if X 7→ τ ∈ σ

X if X not in the domain of σ

σ(int) ≜ int
σ(τ → τ ′) ≜ σ(τ) → σ(τ ′)

We don’t need to worry about avoiding variable capture: all type
variables are “free.”

Given two substitutions σ1 and σ2, we write σ1 ◦ σ2 for their
composition: (σ1 ◦ σ2)(τ) = σ1(σ2(τ)).

15

Type Substitution

We can define substitution of type variables formally:

σ(X) ≜
{
τ if X 7→ τ ∈ σ

X if X not in the domain of σ

σ(int) ≜ int
σ(τ → τ ′) ≜ σ(τ) → σ(τ ′)

We don’t need to worry about avoiding variable capture: all type
variables are “free.”

Given two substitutions σ1 and σ2, we write σ1 ◦ σ2 for their
composition: (σ1 ◦ σ2)(τ) = σ1(σ2(τ)).

15

Unification

Our constraints are of the form τ = τ ′.

We say that a substitution σ unifies constraint τ = τ ′ if
σ(τ) = σ(τ ′).

We say that substitution σ satisfies (or unifies) set of constraints
C if σ unifies every constraint in C.

16

Unification

Our constraints are of the form τ = τ ′.

We say that a substitution σ unifies constraint τ = τ ′ if
σ(τ) = σ(τ ′).

We say that substitution σ satisfies (or unifies) set of constraints
C if σ unifies every constraint in C.

16

Unification

If:
• Γ ` e :τ | C, and
• σ satisfies C,
then e has type τ ′ under Γ,
where σ(τ) = τ ′.

If there are no substitutions that satisfy C, then e is not typeable.

So let’s find a substitution σ that unifies a set of constraints C!

17

Unification

If:
• Γ ` e :τ | C, and
• σ satisfies C,
then e has type τ ′ under Γ,
where σ(τ) = τ ′.

If there are no substitutions that satisfy C, then e is not typeable.

So let’s find a substitution σ that unifies a set of constraints C!

17

Unification Algorithm

unify(∅) ≜ [] (the empty substitution)

unify({τ = τ ′} ∪ C′) ≜
if τ = τ ′ then

unify(C′)
else if τ = X and X not a free variable of τ ′ then

unify(C′{τ ′/X}) ◦ [X 7→ τ ′]
else if τ ′ = X and X not a free variable of τ then

unify(C′{τ/X}) ◦ [X 7→ τ]
else if τ = τo → τ1 and τ ′ = τ ′o → τ ′1 then

unify(C′ ∪ {τ0 = τ ′0, τ1 = τ ′1})
else

fail

18

Unification Algorithm

unify(∅) ≜ [] (the empty substitution)

unify({τ = τ ′} ∪ C′) ≜
if τ = τ ′ then

unify(C′)
else if τ = X and X not a free variable of τ ′ then

unify(C′{τ ′/X}) ◦ [X 7→ τ ′]
else if τ ′ = X and X not a free variable of τ then

unify(C′{τ/X}) ◦ [X 7→ τ]
else if τ = τo → τ1 and τ ′ = τ ′o → τ ′1 then

unify(C′ ∪ {τ0 = τ ′0, τ1 = τ ′1})
else

fail

18

Unification Algorithm

unify(∅) ≜ [] (the empty substitution)

unify({τ = τ ′} ∪ C′) ≜
if τ = τ ′ then

unify(C′)

else if τ = X and X not a free variable of τ ′ then
unify(C′{τ ′/X}) ◦ [X 7→ τ ′]

else if τ ′ = X and X not a free variable of τ then
unify(C′{τ/X}) ◦ [X 7→ τ]

else if τ = τo → τ1 and τ ′ = τ ′o → τ ′1 then
unify(C′ ∪ {τ0 = τ ′0, τ1 = τ ′1})

else
fail

18

Unification Algorithm

unify(∅) ≜ [] (the empty substitution)

unify({τ = τ ′} ∪ C′) ≜
if τ = τ ′ then

unify(C′)
else if τ = X and X not a free variable of τ ′ then

unify(C′{τ ′/X}) ◦ [X 7→ τ ′]

else if τ ′ = X and X not a free variable of τ then
unify(C′{τ/X}) ◦ [X 7→ τ]

else if τ = τo → τ1 and τ ′ = τ ′o → τ ′1 then
unify(C′ ∪ {τ0 = τ ′0, τ1 = τ ′1})

else
fail

18

Unification Algorithm

unify(∅) ≜ [] (the empty substitution)

unify({τ = τ ′} ∪ C′) ≜
if τ = τ ′ then

unify(C′)
else if τ = X and X not a free variable of τ ′ then

unify(C′{τ ′/X}) ◦ [X 7→ τ ′]
else if τ ′ = X and X not a free variable of τ then

unify(C′{τ/X}) ◦ [X 7→ τ]

else if τ = τo → τ1 and τ ′ = τ ′o → τ ′1 then
unify(C′ ∪ {τ0 = τ ′0, τ1 = τ ′1})

else
fail

18

Unification Algorithm

unify(∅) ≜ [] (the empty substitution)

unify({τ = τ ′} ∪ C′) ≜
if τ = τ ′ then

unify(C′)
else if τ = X and X not a free variable of τ ′ then

unify(C′{τ ′/X}) ◦ [X 7→ τ ′]
else if τ ′ = X and X not a free variable of τ then

unify(C′{τ/X}) ◦ [X 7→ τ]
else if τ = τo → τ1 and τ ′ = τ ′o → τ ′1 then

unify(C′ ∪ {τ0 = τ ′0, τ1 = τ ′1})

else
fail

18

Unification Algorithm

unify(∅) ≜ [] (the empty substitution)

unify({τ = τ ′} ∪ C′) ≜
if τ = τ ′ then

unify(C′)
else if τ = X and X not a free variable of τ ′ then

unify(C′{τ ′/X}) ◦ [X 7→ τ ′]
else if τ ′ = X and X not a free variable of τ then

unify(C′{τ/X}) ◦ [X 7→ τ]
else if τ = τo → τ1 and τ ′ = τ ′o → τ ′1 then

unify(C′ ∪ {τ0 = τ ′0, τ1 = τ ′1})
else

fail

18

Unification Properties

The unification algorithm always terminates.

The solution, if it exists, is the most general solution: if
σ = unify(C) and σ′ is a solution to C, then there is some σ′′ such
that σ′ = (σ′′ ◦ σ).

19

Unification Properties

The unification algorithm always terminates.

The solution, if it exists, is the most general solution: if
σ = unify(C) and σ′ is a solution to C, then there is some σ′′ such
that σ′ = (σ′′ ◦ σ).

19

