CS4110

Programming Languages & Logics

Lecture 25
Type Inference

Review: Polymorphic A-Calculus

Syntax

ex=n|x|\T.e|ee|Nele|r]
vi=n|M:T.e|Na.e

Dynamic Semantics

E:=[]|Ee|VvE|E]T]

e—é
Ele] — E[€'] (M:T.e)v— e{v/x} (Aa.e) [r] — e{r/a}

Review: Polymorphic A-Calculus

Frx)=r
A, T Fn:int AT FEx:T

AT, x:tHe:7 AFTo0k ATke :r—7 ATke:T
ATEFM:T.e:T— 71 ATkFe e:7

AUu{a},THe:r ATHe:Va.7 AF 70k
A TEFAxv.e:Va. 7 AT Eelr]:7{7/a}

Review: Polymorphic A-Calculus

Polymorphism let us write a doubling function that works for
any type of function:

double £ Aa. M:a — . Ax:a. f(Fx).

The type of this expression is:

Va. (o = a) > a — «

You can use the polymorphic function by providing a type:

double [int] (An:int.n + 1) 7

Type Inference

In languages like OCaml, programmers don’t have to annotate
their programs with Va. 7 or e [7].

Type Inference

In languages like OCaml, programmers don’t have to annotate
their programs with Va. 7 or e [7].

For example, we can write:

let double f x = f (f x)

and OCaml will figure out that the type is:
('la — 'a) - 'a — 'a

which is equivalent to the same System F type:
VA.(A—A) - A=A

(6]

Type Inference

In languages like OCaml, programmers don’t have to annotate
their programs with Va. 7 or e [7].

We can also write
double (fun x — x+1) 7

and OCaml will infer that the polymorphic function double is
instantiated at the type int.

(6]

Type Inference, Formally

The type inference (or type reconstruction) problem asks
whether, for a given untyped \-calculus expression €’ there
exists a well-typed System F expression e such that erase(e) = €’

Type Inference, Formally

The type inference (or type reconstruction) problem asks
whether, for a given untyped \-calculus expression €’ there
exists a well-typed System F expression e such that erase(e) = €’

It was shown to be undecidable by Wells in 1994.

ML Polymorphism

Polymorphism in OCaml (and other MLs) has some restrictions
to ensure that type inference remains decidable.

ML Polymorphism

Polymorphism in OCaml (and other MLs) has some restrictions
to ensure that type inference remains decidable.

These restrictions, called prenex polymorphism, stipulate that Vs
may only appear in the “outermost” position.

~

ML Polymorphism

Polymorphism in OCaml (and other MLs) has some restrictions
to ensure that type inference remains decidable.

These restrictions, called prenex polymorphism, stipulate that Vs
may only appear in the “outermost” position.

Examples
e Prenex: Va. o — «

~

ML Polymorphism

Polymorphism in OCaml (and other MLs) has some restrictions
to ensure that type inference remains decidable.

These restrictions, called prenex polymorphism, stipulate that Vs
may only appear in the “outermost” position.

Examples
e Prenex:Va.a — «
* Not prenex: (Va. a — a) — int

ML Polymorphism

Polymorphism in OCaml (and other MLs) has some restrictions
to ensure that type inference remains decidable.

These restrictions, called prenex polymorphism, stipulate that Vs
may only appear in the “outermost” position.

Examples
e Prenex: Va.a — «
* Not prenex: (Va. a — a) — int

These restrictions have the following practical ramifications:
e Can’tinstantiate type variables with polymorphic types
e Can’t put a polymorphic type on the left of an arrow

Example

These restrictions mean that certain terms that are typeable in
System F are not typeable in ML!

Example

These restrictions mean that certain terms that are typeable in
System F are not typeable in ML!

OCaml version 4.01.0

fun x -> x x;;

Error: This expression has type 'a -> 'b
but an expression was expected of type 'a
The type variable 'a occurs inside 'a -> 'b

Type Inference

Type inference may be undecidable for the polymorphic
A-calculus and OCaml, but it is possible for the simply-tpyed
A-calculus!

Type Inference

Type inference may be undecidable for the polymorphic
A-calculus and OCaml, but it is possible for the simply-tpyed
A-calculus!

Type inference for the STLC means guessing a 7 in every
abstraction in an untyped version:

AX. e
to produce a typed program:
AX:T.e

that we can use in the typing rule for functions.

Example

Here’s an untyped program:
Aa. Ab. Xc.ifa(b+1)thenbelsec

10

Example

Here’s an untyped program:
Aa. \b. Ac.ifa (b + 1) thenbelsec

Informal inference:

10

Example

Here’s an untyped program:
Aa. \b. Ac.ifa (b + 1) thenbelsec

Informal inference:
e b must beint

10

Example

Here’s an untyped program:
Aa. \b. Ac.ifa (b + 1) thenbelsec

Informal inference:
e b must beint
e g must be some kind of function

10

Example

Here’s an untyped program:
Aa. Ab. Xc.ifa (b+ 1) thenbelsec

Informal inference:

e b must beint

e a must be some kind of function

e the argument type of a must be the sameasb + 1

10

Example

Here’s an untyped program:
Aa. Ab. Xc.ifa (b+ 1) thenbelsec

Informal inference:

e b must beint

e a must be some kind of function

e the argument type of a must be the sameasb + 1
e the result type of a must be bool

10

Example

Here’s an untyped program:
Aa. Ab. Xc.ifa (b+ 1) thenbelsec

Informal inference:

e b must beint

e a must be some kind of function

the argument type of a must be the sameasb + 1

the result type of a must be bool

the type of ¢ must be the same as b

10

Example

Here’s an untyped program:
Aa. Ab. Xc.ifa (b+ 1) thenbelsec

Informal inference:

e b must beint

e a must be some kind of function

the argument type of a must be the sameasb + 1
the result type of a must be bool

the type of ¢ must be the same as b

Putting all these pieces together:
Aa:int — bool. \b:int. \c:int.ifa (b + 1) thenbelsec

Constriant-Based Inference

Let’s automate type inference!

11

Constriant-Based Inference

Let’s automate type inference!

We introduce a new judgment:
NFe:T|C

Given a typing context [and an expression e, it generates a set
of constraints—equations between types.

11

Constriant-Based Inference

Let’s automate type inference!

We introduce a new judgment:
NFe:T|C

Given a typing context [and an expression e, it generates a set
of constraints—equations between types.

If these constraints are solvable, then e can be well-typed inT.

A solution to a set of constraints is a type substitution o that, for
each equation, makes both sides syntactically equal.

STLC for Type Inference

Let’s define the type inference judgment for this STLC language:

ex=x|\T.e|lee|nje+e
To=int | X| 1 —n

You can use a type variable X wherever you want to have a type
inferred.

12

Constraint-Based Typing Judgment

13

Constraint-Based Typing Judgment

Fe=x:71]0 I=n:int|(

CT-INT

13

Constraint-Based Typing Judgment

[(x) =
() T CT-VAR

Fex:r |0 I n:int | ()

r|_e]_i’7'1’C1 rl_eziT2‘C2
rl_el—l-ez:int‘ClUCzU{Tl :int,TZZint}

CT-INT

CT-ApD

13

Constraint-Based Typing Judgment

[(x) =
() T CT-VAR

Fex:r |0 I n:int | ()

r|_e]_i’7'1’C1 rl_eziT2‘C2
rl_el—l-ez:int‘ClUCzU{Tl :int,TZZint}

Mx:nkemn|C

CT-ABS
NEXMm.exm —n|C

CT-INT

CT-ApD

13

Constraint-Based Typing Judgment

Frx)=r
— CT-VaR — CTNT
Fe=x:71]0 I=n:int | ()
MNFe;: C Thkey: C
.1 71’ 1 2 Tz.‘ 2 : CT-ADD
MFey+eint| CCUCU{r =int, 7, = int}
Mx:nkemn|C
CT-ABS
NEXMm.exm —n|C
rl_el:Tl‘Cl r|—6227'2|C2
Xfresh C=CUGU{n=7n—X}
CT-AppP

F-ee:X|C

Solving Constraints

A type substitution is a finite map from type variables to types.

Example: The substitution
[X — int,Y — int — int]

maps type variable Xto int and Yto int — int.

14

Type Substitution

We can define substitution of type variables formally:

15

Type Substitution

We can define substitution of type variables formally:

AT fX—>TECO
o(X) = . . .
X ifXnotinthe domainof o

Type Substitution

We can define substitution of type variables formally:

o(X) 2 {;

ifX—T1€o0

if X not in the domain of o

Type Substitution

We can define substitution of type variables formally:

O’(X)é{T ifX—T1€o0

X if Xnotinthe domainofo

Type Substitution

We can define substitution of type variables formally:

O’(X)é{T ifX—T1€o0

X if Xnotinthe domainofo

We don’t need to worry about avoiding variable capture: all type
variables are “free.”

Type Substitution

We can define substitution of type variables formally:

AT fX—>TEC
o(X) = . . .
X ifXnotinthe domainof o
o(int) £ int
o(t — 1) £ o(1) = o(7)

We don’t need to worry about avoiding variable capture: all type
variables are “free.”

Given two substitutions o; and o5, we write o, o o, for their
composition: (o1 0 0,)(7) = 01(02(7)).

Unification

Our constraints are of the form 7 = 7/.

16

Unification

Our constraints are of the form 7 = 7/.

We say that a substitution o unifies constraint 7 = 7" if

o(r) = o(r).

We say that substitution o satisfies (or unifies) set of constraints
C if o unifies every constraintin C.

16

Unification

If:
eFe:7]|C and
e o satisfies C,

then e has type 7/ under T,
where o (1) = 7.

If there are no substitutions that satisfy C, then e is not typeable.

17

Unification

If:

eFe:7]|C and

e o satisfies C,

then e has type 7/ under T,
where o (1) = 7.

If there are no substitutions that satisfy C, then e is not typeable.

So let’s find a substitution o that unifies a set of constraints C!

17

Unification Algorithm

18

Unification Algorithm

unify(D) =[] (the empty substitution)

18

Unification Algorithm

unify(D) =[] (the empty substitution)
unify({r =7} u) =
if 7 = 7' then

unify(C’)

18

Unification Algorithm

unify(D) =[] (the empty substitution)
unify({r =7'}uc) £
if 7 = 7' then

unify(C")

else if - = X and X not a free variable of 7/ then
unify(C'{7'/X}) o [X — 7]

18

Unification Algorithm

unify(D) =[] (the empty substitution)
unify({r =r'yu) £
if 7 = 7' then

unify(C")

else if = Xand X not a free variable of 7’ then
unify(C'{7'/X}) o [X — 7]

else if 7/ = Xand X not a free variable of 7 then
unify(C'{r/X}) o [X — 7]

18

Unification Algorithm

unify(D) =[] (the empty substitution)
unify({r =r'yu) £
if 7 = 7' then

unify(C")

else if = Xand X not a free variable of 7’ then
unify(C'{7'/X}) o [X — 7]

else if 7/ = Xand X not a free variable of 7 then
unify(C'{r/X}) o [X — 7]

elseifr =7, > mand 7 = 7, — 7] then
unify(C' U {r = 15,11 = 71})

18

Unification Algorithm

unify(D) =[] (the empty substitution)
unify({r =r'yu) £
if 7 = 7' then

unify(C")

else if = Xand X not a free variable of 7’ then
unify(C'{7'/X}) o [X — 7]

else if 7/ = Xand X not a free variable of 7 then
unify(C'{r/X}) o [X — 7]

elseifr =7, > mand 7 = 7, — 7] then
unify(C' U {r = 15,11 = 71})

else
fail

Unification Properties

The unification algorithm always terminates.

19

Unification Properties

The unification algorithm always terminates.

The solution, if it exists, is the most general solution: if
o = unify(C) and ¢’ is a solution to C, then there is some ¢ such
thato’ = (¢” 0 o).

19

