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Programming Languages & Logics

Lecture 5
IMP Properties



Command Equivalence

Intuitively, two commands are equivalent if they produce the
same result under any store...

Definition (Equivalence of commands)
Two commands c and c′ are equivalent (written c ∼ c′) if, for any
stores σ and σ′, we have

〈σ, c〉 ⇓ σ′ ⇐⇒ 〈σ, c′〉 ⇓ σ′.
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Command Equivalence

For example, we can prove that everywhile command is
equivalent to its “unrolling”:

Theorem
For all b ∈ Bexp and c ∈ Com,

while b do c ∼ if b then (c;while b do c) else skip

Proof.
We show each implication separately...
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IMP Questions

• Q: Can you write a program that doesn’t terminate?

• A: while true do skip

• Q: Does this mean that IMP is Turing complete?
• A: Not quite... we also need to check the language is not finite
state... but IMP has real mathematical integers.

• Q: What if we replace Intwith Int64?
• A: Then we would lose Turing completeness.

• Q: Howmuch space do we need to represent configurations
during execution of an IMP program?

• A: Can calculate a fixed bound!
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Determinism

Theorem
∀c ∈ Com, σ, σ′ σ′′ ∈ Store.
if 〈σ, c〉 ⇓ σ′ and 〈σ, c〉 ⇓ σ′′ then σ′ = σ′′.

Proof.
By structural induction on c...

Proof.
By induction on the derivation of 〈σ, c〉 ⇓ σ′...
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Derivations

WriteD ⊩ y if the conclusion of derivationD is y.
(Read as “D proves y.”)

Example:
Given the derivation,

〈σ, 6〉 ⇓ 6 〈σ, 7〉 ⇓ 7
〈σ, 6× 7〉 ⇓ 42

〈σ, i := 6× 7〉 ⇓ σ[i 7→ 42]

we would write: D ⊩ 〈σ, i := 42〉 ⇓ σ[i 7→ 42]

6



Derivations

WriteD ⊩ y if the conclusion of derivationD is y.
(Read as “D proves y.”)

Example:
Given the derivation,

〈σ, 6〉 ⇓ 6 〈σ, 7〉 ⇓ 7
〈σ, 6× 7〉 ⇓ 42

〈σ, i := 6× 7〉 ⇓ σ[i 7→ 42]

we would write: D ⊩ 〈σ, i := 42〉 ⇓ σ[i 7→ 42]

6



Induction on Derivations

Remember that every “true” fact given by an inductive definition
must have a derivation that “proves” that fact.

For many inductive proofs, it’s useful to visualize the derivation
tree for each fact.

In each case in an inductive proof, we assume that the property
P holds for the rule’s premises and prove it for the rule’s
conclusion.

Those premises each also have derivations.

A derivationD′ is an immediate subderivation ofD ifD′ ⊩ z
where z is one of the premises used of the final rule of derivation
D.
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Large‑Step Semantics

SKiP
〈σ, skip〉 ⇓ σ

ASSGN
〈σ, a〉 ⇓ n

〈σ, x := a〉 ⇓ σ[x 7→ n]

SEQ
〈σ, c1〉 ⇓ σ′ 〈σ′, c2〉 ⇓ σ′′

〈σ, c1; c2〉 ⇓ σ′′

IF‑T
〈σ, b〉 ⇓ true 〈σ, c1〉 ⇓ σ′

〈σ, if b then c1 else c2〉 ⇓ σ′

IF‑F
〈σ, b〉 ⇓ false 〈σ, c2〉 ⇓ σ′

〈σ, if b then c1 else c2〉 ⇓ σ′

WHiLE‑T
〈σ, b〉 ⇓ true 〈σ, c〉 ⇓ σ′ 〈σ′,while b do c〉 ⇓ σ′′

〈σ,while b do c〉 ⇓ σ′′

WHiLE‑F
〈σ, b〉 ⇓ false

〈σ,while b do c〉 ⇓ σ
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