
 

CS 4110

Programming Languages & Logics

Lecture 1
Course Overview



JavaScript

[] + []
{} + []
[] + {}
{} + {}

FromWat:
https://www.destroyallsoftware.com/talks/wat

2

https://www.destroyallsoftware.com/talks/wat


Java

class A {
static int a = B.b + 1;

}

class B {
static int b = A.a + 1;

}

3



Python

a = [1], 2
a[0] += [3]

4



Java and Scala

Nada Amin and Ross Tate:
http://io.livecode.ch/learn/namin/unsound

5

http://io.livecode.ch/learn/namin/unsound


Design Desiderata

Question: What makes a good programming language?

One answer: A good language is one people use.

Wrong! Is JavaScript bad? What’s the best language?

Some good features:

• Simplicity (clean, orthogonal constructs)
• Readability (elegant syntax)
• Safety (guarantees that programs won’t “go wrong”)
• Modularity (support for collaboration)
• Efficiency (it’s possible to write a good compiler)

6



Design Desiderata

Question: What makes a good programming language?

One answer: A good language is one people use.

Wrong! Is JavaScript bad? What’s the best language?

Some good features:

• Simplicity (clean, orthogonal constructs)
• Readability (elegant syntax)
• Safety (guarantees that programs won’t “go wrong”)
• Modularity (support for collaboration)
• Efficiency (it’s possible to write a good compiler)

6



Design Desiderata

Question: What makes a good programming language?

One answer: A good language is one people use.

Wrong! Is JavaScript bad? What’s the best language?

Some good features:

• Simplicity (clean, orthogonal constructs)
• Readability (elegant syntax)
• Safety (guarantees that programs won’t “go wrong”)
• Modularity (support for collaboration)
• Efficiency (it’s possible to write a good compiler)

6



Design Desiderata

Question: What makes a good programming language?

One answer: A good language is one people use.

Wrong! Is JavaScript bad? What’s the best language?

Some good features:

• Simplicity (clean, orthogonal constructs)
• Readability (elegant syntax)
• Safety (guarantees that programs won’t “go wrong”)
• Modularity (support for collaboration)
• Efficiency (it’s possible to write a good compiler)

6



Design Challenges

Unfortunately these goals almost always conflict.
• Types provide strong guarantees but restrict expressiveness.

• Safety checks eliminate errors but have a cost—either at
compile time or run time.

• A language that’s good for quick prototyping might not be the
best for long‑term development.

A lot of research in programming languages is about discovering
ways to gain without (too much) pain.

7



Design Challenges

Unfortunately these goals almost always conflict.
• Types provide strong guarantees but restrict expressiveness.

• Safety checks eliminate errors but have a cost—either at
compile time or run time.

• A language that’s good for quick prototyping might not be the
best for long‑term development.

A lot of research in programming languages is about discovering
ways to gain without (too much) pain.

7



Language Specification

Formal Semantics: what do programsmean?

Three Approaches
• Operational
▶ Models program by its execution on abstract machine
▶ Useful for implementing compilers and interpreters

• Axiomatic
▶ Models program by the logical formulas it obeys
▶ Useful for proving program correctness

• Denotational
▶ Models program literally as mathematical objects
▶ Useful for theoretical foundations

Question: Few real‑world languages have a formal semantics.
Why?

8



Language Specification

Formal Semantics: what do programsmean?

Three Approaches
• Operational
▶ Models program by its execution on abstract machine
▶ Useful for implementing compilers and interpreters

• Axiomatic
▶ Models program by the logical formulas it obeys
▶ Useful for proving program correctness

• Denotational
▶ Models program literally as mathematical objects
▶ Useful for theoretical foundations

Question: Few real‑world languages have a formal semantics.
Why?

8



Formal Semantics

Too Hard?

• Real languages are complex
• Notation can gets very dense
• Sometimes requires developing newmathematics
• Not (yet?) cost‑effective for everyday use

Overly General?

• Explains the behavior of a program on every input
• Most programmers are content knowing the behavior of their
program on this input (or these inputs)

Okay, so who needs semantics?

9



Who Needs Semantics?

Unambiguous Description

• Anyone who wants to design a new feature
• Basis for most formal arguments
• Standard tool in PL research

Exhaustive Reasoning

• Sometimes have to know behavior on all inputs
• Compilers and interpreters
• Static analysis tools
• Program transformation tools
• Critical software

10



Course Staff

Instructor
Adrian Sampson (he/him)

Teaching Assistants
Omkar Bhalerao
Vivian Ding
Zak Kent
Megh Khaire
James Li
Stephanie Ma
Jan‑Paul Ramos
Noah Rebei
Tia Vu

11



Prerequisites

Mathematical Maturity

• Much of this class will involve formal reasoning
• Set theory, formal proofs, induction

Programming Experience

• Comfortable using a functional language
• For Cornell undergrads: CS 3110 or equivalent

Interest (having fun is a goal!)

If you don’t meet these prerequisites, please get in touch.

12



Course Website

http://www.cs.cornell.edu/courses/cs4110/2024sp/
13

http://www.cs.cornell.edu/courses/cs4110/2024sp/


Course Work

Homework
• 10 assignments, roughly one per week
• Can work with at most one partner
• Usually due on Thursday night at 11:59pm
• Automatic 24‑hour extension without penalty
• Score capped at 85%
• Lowest score dropped

14



Course Work

Preliminary Exams (in‑class)
• March 8
• April 19

Final Exam
• Date TBD

Participation (5% of your grade)
• Introduction survey (out now!)
• Mid‑semester feedback
• Course evaluation

15



The Difficulty You Can Expect

16



CS 4110 vs. CS 5110

The difference is:
CS 4110 is for undergrads (exclusively);
CS 5110 is for grad students (exclusively).

Everything else is the same, except that CS 5110 students do an
extra “expanded version” of a solution after each exam.

17



Academic Integrity

Some simple requests:

1. You are here as members of an academic community.
Conduct yourself with integrity.

2. Problem sets must be completed with your partner, and only
your partner. Youmust not consult other students, alums,
friends, Google, GitHub, StackExchange, Course Hero, etc.!

3. If you aren’t sure what is allowed and what isn’t, please ask.

18



Respect in Class

We hold all communication (in class & online) to a high standard
for inclusiveness. It may not target anyone for harassment, and
it may not exclude specific groups.

Examples:
• Do not talk over other people.
• Do not use male pronouns when youmean to refer to people
of all genders.

• Avoid language that has a good chance of seeming
inappropriate to others.

If anything doesn’t meet these standards, contact the instructor.

19



Disabilities and Wellness

• I will provide accommodations to students with documented
disabilities (e.g., physical, learning, psychiatric, vision,
hearing, or systemic).

• If you are experiencing undue personal or academic stress at
any time during the semester (or if you notice that a fellow
student is), contact me, Engineering/A&S Advising, or
Gannett.

20


