
CS 4110 – Programming Languages and Logics
Lecture #14: More 𝜆-calculus

1 Lambda calculus evaluation

There are many different evaluation strategies for the 𝜆-calculus. The most permissive is full 𝛽
reduction, which allows any redex—i.e., any expression of the form (𝜆𝑥. 𝑒1) 𝑒2—to step to 𝑒1{𝑒2/𝑥}
at any time. It is defined formally by the following small-step operational semantics rules:

𝑒1 → 𝑒′1
𝑒1 𝑒2 → 𝑒′1 𝑒2

𝑒2 → 𝑒′2
𝑒1 𝑒2 → 𝑒1 𝑒′2

𝑒1 → 𝑒′1
𝜆𝑥. 𝑒1 → 𝜆𝑥. 𝑒′1

𝛽 (𝜆𝑥. 𝑒1) 𝑒2 → 𝑒1{𝑒2/𝑥}
The call by value (CBV) strategy enforces a more restrictive strategy: it only allows an application
to reduce after its argument has been reduced to a value (i.e., a 𝜆-abstraction) and does not allow
evaluation under a 𝜆. It is described by the following small-step operational semantics rules (here
we show a left-to-right version of CBV):

𝑒1 → 𝑒′1
𝑒1 𝑒2 → 𝑒′1 𝑒2

𝑒2 → 𝑒′2
𝑣1 𝑒2 → 𝑣1 𝑒′2

𝛽 (𝜆𝑥. 𝑒1) 𝑣2 → 𝑒1{𝑣2/𝑥}
Finally, the call by name (CBN) strategy allows an application to reduce even when its argument is
not a value but does not allow evaluation under a 𝜆. It is described by the following small-step
operational semantics rules:

𝑒1 → 𝑒′1
𝑒1 𝑒2 → 𝑒′1 𝑒2

𝛽 (𝜆𝑥. 𝑒1) 𝑒2 → 𝑒1{𝑒2/𝑥}

2 Confluence

It is not hard to see that the full 𝛽 reduction strategy is non-deterministic. This raises an interesting
question: does the choices made during the evaluation of an expression affect the final result? The
answer turns out to be no: full 𝛽 reduction is confluent in the following sense:

Theorem (Confluence). If 𝑒 →∗ 𝑒1 and 𝑒 →∗ 𝑒2 then there exists 𝑒′ such that 𝑒1 →∗ 𝑒′ and 𝑒2 →∗ 𝑒′.
Confluence can be depicted graphically as follows:

𝑒

𝑒1 𝑒2

𝑒′

Confluence is often also called the Church–Rosser property.

1



3 Substitution

Each of the evaluation relations for𝜆-calculus has a 𝛽 defined in terms of a substitution operation on
expressions. Because the expressions involved in the substitution may share some variable names
(and because we are working up to 𝛼-equivalence) the definition of this operation is slightly subtle
and defining it precisely turns out to be tricker than might first appear.

As a first attempt, consider an obvious (but incorrect) definition of the substitution operator.
Here we are substituting 𝑒 for 𝑥 in some other expression:

𝑦{𝑒/𝑥} =
{
𝑒 if 𝑦 = 𝑥
𝑦 otherwise

(𝑒1 𝑒2){𝑒/𝑥} = (𝑒1{𝑒/𝑥}) (𝑒2{𝑒/𝑥})
(𝜆𝑦.𝑒1){𝑒/𝑥} = 𝜆𝑦.𝑒1{𝑒/𝑥} where 𝑦 ≠ 𝑥

The intuitive idea is that the last rule relies on 𝛼-equivalence to “rewrite” abstractions that use 𝑥 so
they do not conflict. Unfortunately, this definition produces the wrong results when we substitute
an expression with free variables under a 𝜆. For example,

(𝜆𝑦.𝑥){𝑦/𝑥} = (𝜆𝑦.𝑦)
To fix this problem, we need to revise our definition so that when we substitute under a 𝜆 we
do not accidentally bind variables in the expression we are substituting. The following definition
correctly implements capture-avoiding substitution:

𝑦{𝑒/𝑥} =
{
𝑒 if 𝑦 = 𝑥
𝑦 otherwise

(𝑒1 𝑒2){𝑒/𝑥} = (𝑒1{𝑒/𝑥}) (𝑒2{𝑒/𝑥})
(𝜆𝑦.𝑒1){𝑒/𝑥} = 𝜆𝑦.(𝑒1{𝑒/𝑥}) where 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑒)

Note that in the case for 𝜆-abstractions, we require that the bound variable 𝑦 be different from the
variable 𝑥 we are substituting for and that 𝑦 not appear in the free variables of 𝑒, the expression
we are substituting. Because we work up to 𝛼-equivalence, we can always pick 𝑦 to satisfy these
side conditions. For example, to calculate (𝜆𝑧.𝑥 𝑧){(𝑤 𝑦 𝑧)/𝑥} we first rewrite 𝜆𝑧.𝑥 𝑧 to 𝜆𝑢.𝑥 𝑢 and
then apply the substitution, obtaining 𝜆𝑢.(𝑤 𝑦 𝑧) 𝑢 as the result.

2


	Lambda calculus evaluation
	Confluence
	Substitution

