CS 4110 — Programming Languages and Logics
Lecture #4: Large-step semantics

1 Large-step operational semantics

In the last lecture we defined a semantics for our language of arithmetic expressions using a small-
step evaluation relation — C Config X Config (and its reflexive and transitive closure —*). In this
lecture we will explore an alternative approach—large-step operational semantics—which yields
the final result of evaluating an expression directly.

Defining a large-step semantics boils down to specifying a relation |} that captures the evalua-
tion of an expression. The || relation has the following type:

| C (Store x Exp) X (Store x Int).

We write (o, e) || {0/, n) to indicate that ((c, e), (¢0’,n)) € . In other words, the expression e with
store ¢ evaluates in one big step to the final store ¢’ and integer 7.
We define the relation |} inductively, using inference rules:
n = o(x)
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To illustrate the use of these rules, consider the following proof tree, which shows that evaluating
(0, foo :=3; foo* bar) using a store o such that o(bar) = 7 yields ¢’ = o[foo + 3] and 21 as a result:
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(0, foo) | {0’,3) (o', bar) || (o', 7)

@3 00,3 (0", foo* bary | (o', 21)
(0, foo :=3; foo*bar) | (d’,21)
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A closer look to this structure reveals the relation between small step and large-step evaluation:
a depth-first traversal of the large-step proof tree yields the sequence of one-step transitions in
small-step evaluation.



2 Equivalence of semantics

A natural question to ask is whether the small-step and large-step semantics are equivalent. The
next theorem answers this question affirmatively.

Theorem (Equivalence of semantics). For all expressions e, stores o and o, and integers n we have:
(0,e) || (o', n) ifand only if (o, e) —" (o', n)
To streamline the proof, we will work with the following definition of the multi-step relation:

REFL

(g,e) =" (g, ¢)

<a’ e> N <a// e/> <(7,, e/> _)x- <G/// e//>
TRANS

<G, €> _)x- <G//, e//
Proof sketch. We show each direction separately.

=: We want to prove that the following property P holds for all expressions e € Exp:
P(e) £ Vo, 0’ € Store. Vn € Int. (0,¢e) || {0/, n) = (0, ¢e) =" (o', n)

We proceed by structural induction on e. We have to consider each of the possible axioms
and inference rules for constructing an expression.

Case ¢ = x: Assume that (o, x) || (¢’, n). That is, there is some derivation in the large-step
operational semantics whose conclusion is (o, x) || (o, n). There is only one rule whose
conclusion matches the configuration (o, x): the large-step rule VAr. Thus, we have
n = o(x) and ¢’ = 0. By the small-step rule VAR, we also have (o, x) — (o, n). By the
REFL and TraNs rules, we conclude that {0, x) —"* (o, n), which finishes the case.

Case e = n: Assume that (o,n) |] (¢/,n’). There is only one rule whose conclusion matches
(o, n): the large-step rule INT. Thus, we have n’ = n and ¢’ = ¢ and so (0, n) =" (0, n)
by the ReFL rule.

Case ¢ = ¢; +ey: Thisis an inductive case. We want to prove that if P(e;) and P(e2) hold, then
P(e) also holds. Let’s write out P(e;), P(e2), and P(e) explicitly.

P(e1) = Vn,o0,0’.{(0,e1) | {0’,n) = {(0,e1) =" (o', n)
P(es) = Vn,o,0’.{(0,e3) || {(0’,n) = {(0,e3) =" (o', n)
P(e) = Vn,o0,0".{0,e1+e3) | {0/, n) = (0,e1+e3) —* {0/, n)

Assume that P(e;) and P(e2) hold. Also assume that there exist ¢, ¢’ and n such that
(0,e1+e3) || {0/, n). We need to show that (g, e +e2) —* (¢’,n).

We assumed that (o, e; +e3) || {0/, n). This means that there is some derivation whose
conclusion is (o, e; +e2) |} (¢/, n). By inspection, we see that only one rule has a conclu-
sion of this form: the App rule. Thus, the last rule used in the derivation was App and
it must be the case that (g, e1) || (¢”,n1) and (¢”, e2) | {0’, n2) hold for some 711 and 7o
withn = ni + no.



By the induction hypothesis P(e1), as (o, e1) || {¢”,n1), wemusthave (o, e;) =" (¢”,n1).
Likewise, by induction hypothesis P(ez), we have (0", e2) —* (0’, n2). By Lemma 1 be-
low, we have,

(0,e1+e3) =" (0", n1+e),

and by another application of Lemma 1 we have:
(0", ny+eq) =" (o', 1 +ny)
Then, using the small-step App rule and the multi-step TRANS rule, we have:

n=ny+ns

y y DD y — REFL
(o', n1+nz) — (o', n) (o/,n) =" (o', n)

(o', n1 +ns) =" (o', n)

TrANS

Finally, by two applications of Lemma 2, we obtain (o, e; + e2) —" (¢’, 1), which finishes
the case.

Case ¢ = ¢1 * ¢9. Similar to case for e; + e3 above.
Case ¢ = x := ¢7; e2. Omitted. Try it as an exercise.

&=: We proceed by induction on the derivation of (c,e) —* (¢’, n) with a case analysis on the
last rule used.

Case RerL: Then e = n and ¢’ = 0. We immediately have (o,n) || (o, n) by the large-step
rule INT.

Case Trans: Then (o,e) — (¢”,¢”) and (¢”,¢e”) —* (0’,n). In this case, the induction
hypothesis gives (¢”,e”) || {0/, n). The result follows from Lemma 3 below.

O
Lemma 1. If (0, e) =" (0’, n), then the following hold:

(0,e+ez) =" (0’,n+ez)
(0,exeq) = (0, n*ey)
(o,n1+e) =" (o', ny+n)
(o,n1xe) =" (o', ny*n)
* (0,x:=e;ey) > (o', x:=n;er)

Proof. Omitted; try it as an exercise. O
Lemma 2. If (0,e) =" (o', ¢’) and (c’,e’) =" (c”,¢e"”), then (o, e) =" (c”,e”).

Proof. Omitted; try it as an exercise. O
Lemma 3. If (0,¢e) — (0”,¢e"”)and (c”,e"”) || (o’,n), then (c,e) | (0o’,n).

Proof. Omitted; try it as an exercise. O
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