CS 4110 # Programming Languages & Logics Lecture 27 Recursive Types ## **Recursive Types** Many languages support data types that refer to themselves: #### Java ``` class Tree { Tree leftChild, rightChild; int data; } ``` ### Recursive Types Many languages support data types that refer to themselves: #### Java ``` class Tree { Tree leftChild, rightChild; int data; } ``` #### **OCaml** ``` type tree = Leaf | Node of tree * tree * int tree = unit + int * tree * iree ``` ### Recursive Types Many languages support data types that refer to themselves: #### Java ``` class Tree { Tree leftChild, rightChild; int data; } ``` #### **OCaml** ``` type tree = Leaf | Node of tree * tree * int ``` #### λ -calculus? ``` tree = unit + int \times tree \times tree ``` #### Recursive Type Equations We would like **tree** to be a solution of the equation: $$\alpha = \mathbf{unit} + \mathbf{int} \times \alpha \times \alpha$$ However, no such solution exists with the types we have so far... We could *unwind* the equation: $$\alpha =$$ unit $+$ int $\times \alpha \times \alpha$ We could *unwind* the equation: We could *unwind* the equation: ``` \alpha = \mathsf{unit} + \mathsf{int} \times \alpha \times \alpha = unit + int\times (unit + int \times \alpha \times \alpha)\times (unit + int \times \alpha \times \alpha) = unit + int\times (unit + int\times (unit + int \times \alpha \times \alpha)\times (unit + int \times \alpha \times \alpha))\times (unit + int\times (unit + int \times \alpha \times \alpha)\times ``` (unit + int $\times \alpha \times \alpha$)) We could *unwind* the equation: ``` \alpha = \mathsf{unit} + \mathsf{int} \times \alpha \times \alpha = unit + int\times (unit + int \times \alpha \times \alpha)\times (unit + int \times \alpha \times \alpha) = unit + int\times (unit + int\times (unit + int \times \alpha \times \alpha)\times (unit + int \times \alpha \times \alpha)) \times (unit + int\times (unit + int \times \alpha \times \alpha)\times (unit + int \times \alpha \times \alpha)) ``` We could *unwind* the equation: ``` \alpha = \mathsf{unit} + \mathsf{int} \times \alpha \times \alpha = unit + int\times (unit + int \times \alpha \times \alpha)\times (unit + int \times \alpha \times \alpha) = unit + int\times (unit + int\times (unit + int \times \alpha \times \alpha)\times (unit + int \times \alpha \times \alpha))\times (unit + int\times (unit + int \times \alpha \times \alpha)\times (unit + int \times \alpha \times \alpha)) ``` If we take the limit of this process, we have an infinite tree. ## Infinite Types Think of this as an infinite labeled graph whose nodes are labeled with the type constructors \times , +, **int**, and **unit**. This infinite tree is a solution of our equation, and this is what we take as the type **tree**. ### μ Types We'll specify potentially-infinite solutions to type equations using a finite syntax based on the *fixed-point type constructor* μ . $$\mu\alpha.\tau$$ $$\alpha = \mathcal{V}$$ $$\alpha = uu + iu + x \times x \times x$$ (#### μ Types We'll specify potentially-infinite solutions to type equations using a finite syntax based on the *fixed-point type constructor* μ . $$\mu\alpha.\tau$$ Here's a **tree** type satisfying our original equation: tree $$\triangleq \mu \alpha$$. unit $+$ int $\times \alpha \times \alpha$. (## Static Semantics (Equirecursive) We'll define two treatments of recursive types. With *equirecursive types*, a recursive type is equal to its unfolding: ## Static Semantics (Equirecursive) We'll define two treatments of recursive types. With equirecursive types, a recursive type is equal to its unfolding: $\mu\alpha$. au is a solution to $\alpha= au$, so: $$\mu\alpha. \tau = \tau \{\mu\alpha. \tau/\alpha\}$$ Two typing rules let us switch between folded and unfolded: $$\frac{\Gamma \vdash \mathbf{e} : \tau\{\mu\alpha.\,\tau/\alpha\}}{\Gamma \vdash \mathbf{e} : \mu\alpha.\,\tau} \; \mu\text{-Intro}$$ $$\frac{\Gamma \vdash e : \mu\alpha.\tau}{\Gamma \vdash e : \tau\{\mu\alpha.\tau/\alpha\}} \; \mu\text{-elim}$$ 7 ## Isorecursive Types Alternatively, *isorecursive types* avoid infinite type trees. The type $\mu\alpha$. τ is distinct but transformable to and from $\tau\{\mu\alpha,\tau/\alpha\}$. ## Isorecursive Types Alternatively, *isorecursive types* avoid infinite type trees. The type $\mu\alpha$. τ is distinct but transformable to and from $\tau\{\mu\alpha,\tau/\alpha\}$. Converting between the two uses explicit **fold** and **unfold** operations: $$\mathbf{unfold}_{\mu\alpha.\,\tau} : \mu\alpha.\,\tau \to \tau\{\mu\alpha.\,\tau/\alpha\}$$ $$\mathbf{fold}_{\mu\alpha.\,\tau} : \tau\{\mu\alpha.\,\tau/\alpha\} \to \mu\alpha.\,\tau$$ ## Static Semantics (Isorecursive) The typing rules introduce and eliminate μ -types: $$\begin{split} \frac{\Gamma \vdash e : \tau\{\mu\alpha.\,\tau/\alpha\}}{\Gamma \vdash \mathbf{fold}\,e : \mu\alpha.\,\tau} \; & \mu\text{-INTRO} \\ \frac{\Gamma \vdash e : \mu\alpha.\,\tau}{\Gamma \vdash \mathbf{unfold}\,e : \tau\{\mu\alpha.\,\tau/\alpha\}} \; & \mu\text{-ELIM} \end{split}$$ ## Dynamic Semantics We also need to augment the operational semantics: Intuitively, to access data in a recursive type $\mu\alpha$. τ , we need to **unfold** it first. And the only way that values of type $\mu\alpha$. τ could have been created is via **fold**. ## Example Here's a recursive type for lists of numbers: $$\mathbf{intlist} \triangleq \mu \alpha. \, \mathbf{unit} + \mathbf{int} \times \alpha.$$ #### Example Here's a recursive type for lists of numbers: $$\mathsf{intlist} \triangleq \mu \alpha.\,\mathsf{unit} + \mathsf{int} \times \alpha.$$ Here's how to add up the elements of an **intlist**: Recursive types let us encode the natural numbers! Recursive types let us encode the natural numbers! A natural number is either 0 or the successor of a natural number: $$\mathsf{nat} \triangleq \mu \alpha.\,\mathsf{unit} + \alpha$$ Recursive types let us encode the natural numbers! A natural number is either 0 or the successor of a natural number: $$\mathbf{nat} \triangleq \mu \alpha. \, \mathbf{unit} + \alpha$$ $$\mathbf{0} \triangleq \mathbf{fold} \, (\mathsf{inl}_{\mathbf{unit} + \mathbf{nat}} \, ())$$ Recursive types let us encode the natural numbers! A natural number is either 0 or the successor of a natural number: ``` \begin{aligned} & \text{nat} \triangleq \mu \alpha. \, \text{unit} + \alpha \\ & 0 \triangleq \text{fold} \, (\text{inl}_{\text{unit+nat}} \, ()) \\ & 1 \triangleq \text{fold} \, (\text{inr}_{\text{unit+nat}} \, 0) \\ & 2 \triangleq \text{fold} \, (\text{inr}_{\text{unit+nat}} \, 1), \\ & \vdots \end{aligned} ``` Recursive types let us encode the natural numbers! A natural number is either 0 or the successor of a natural number: $$\begin{aligned} & \text{nat} \triangleq \mu \alpha. \, \text{unit} + \alpha \\ & 0 \triangleq \text{fold} \, (\text{inl}_{\text{unit+nat}} \, ()) \\ & 1 \triangleq \text{fold} \, (\text{inr}_{\text{unit+nat}} \, 0) \\ & 2 \triangleq \text{fold} \, (\text{inr}_{\text{unit+nat}} \, 1), \\ & \vdots \end{aligned}$$ The successor function has type $\mathbf{nat} \to \mathbf{nat}$: $$(\lambda x : \mathbf{nat.} \ \mathbf{fold} \ (\mathsf{inr}_{\mathbf{unit}+\mathbf{nat}} \ x))$$ Recall Ω defined as: $$\omega \triangleq \lambda x. x x$$ Ω was impossible to type... until now! Recall Ω defined as: $$\omega \triangleq \lambda x. x x$$ $$\Omega \triangleq \omega \ \omega$$. Ω was impossible to type... until now! x is a function. Let's say it has the type $\sigma \to \tau$. Recall Ω defined as: $$\omega \triangleq \lambda x. x x$$ $$\Omega \triangleq \omega \ \omega$$. Ω was impossible to type... until now! *x* is a function. Let's say it has the type $\sigma \to \tau$. x is used as the argument to this function, so it must have type σ . Recall Ω defined as: $$\omega \triangleq \lambda x. x x$$ $$\Omega \triangleq \omega \ \omega$$. Ω was impossible to type... until now! x is a function. Let's say it has the type $\sigma \to \tau$. x is used as the argument to this function, so it must have type σ . So let's write a type equation: o let's write a type equation: $$\sigma = \sigma \to \tau$$ $$(\lambda x : \mu \wedge x \to 2 \cdot (\mu \wedge b \cup x) \times x) :$$ $$(\mu \wedge x \to 2 \cdot (\mu \wedge b \cup x) \times x) :$$ Putting these pieces together, the fully typed ω term is: $$\omega \triangleq \lambda x : \mu \alpha. (\alpha \to \tau). \text{ (unfold } x) x$$ $$\mu \alpha. (\alpha \to \tau) \quad \longrightarrow \quad \mathbf{Z}$$ Putting these pieces together, the fully typed ω term is: $$\omega \triangleq \lambda x : \mu \alpha. (\alpha \rightarrow \tau). (unfold x) x$$ The type of ω is $(\mu\alpha.(\alpha \to \tau)) \to \tau$. So the type of **fold** ω is $\mu\alpha$. ($\alpha \to \tau$). Putting these pieces together, the fully typed ω term is: $$\omega \triangleq \lambda x : \mu \alpha. (\alpha \rightarrow \tau). (unfold x) x$$ The type of ω is $(\mu\alpha.(\alpha \to \tau)) \to \tau$. So the type of **fold** ω is $\mu\alpha$. ($\alpha \to \tau$). Now we can define $\Omega = \omega$ (**fold** ω). It has type τ . #### We can even write ω in OCaml: ``` # type u = Fold of (u -> u);; type u = Fold of (u -> u) # let omega = fun x -> match x with Fold f -> f x;; val omega : u -> u = <fun> # omega (Fold omega);; ...runs forever until you hit control-c ``` ## Encoding λ -Calculus With recursive types, we can type everything in the untyped lambda calculus! ## Encoding λ -Calculus With recursive types, we can type everything in the untyped lambda calculus! Every λ -term can be applied as a function to any other λ -term. So let's define an "untyped" type: $$U \triangleq \mu\alpha. \alpha \rightarrow \alpha$$ $$U \Rightarrow U$$ $$V = U$$ $$V \Rightarrow ## Encoding λ -Calculus With recursive types, we can type everything in the untyped lambda calculus! Every λ -term can be applied as a function to any other λ -term. So let's define an "untyped" type: $$U \triangleq \mu \alpha. \, \alpha \to \alpha$$ dx: tree. C The full translation is: Every untyped term maps to a term of type *U*.