CS 4110

Programming Languages & Logics

Lecture 27 Recursive Types

Recursive Types

Many languages support data types that refer to themselves:

Java

```
class Tree {
   Tree leftChild, rightChild;
   int data;
}
```

Recursive Types

Many languages support data types that refer to themselves:

Java

```
class Tree {
   Tree leftChild, rightChild;
   int data;
}
```

OCaml

```
type tree = Leaf | Node of tree * tree * int

tree = unit + int * tree * iree
```

Recursive Types

Many languages support data types that refer to themselves:

Java

```
class Tree {
   Tree leftChild, rightChild;
   int data;
}
```

OCaml

```
type tree = Leaf | Node of tree * tree * int
```

λ -calculus?

```
tree = unit + int \times tree \times tree
```

Recursive Type Equations

We would like **tree** to be a solution of the equation:

$$\alpha = \mathbf{unit} + \mathbf{int} \times \alpha \times \alpha$$

However, no such solution exists with the types we have so far...

We could *unwind* the equation:

$$\alpha =$$
unit $+$ int $\times \alpha \times \alpha$

We could *unwind* the equation:

We could *unwind* the equation:

```
\alpha = \mathsf{unit} + \mathsf{int} \times \alpha \times \alpha
   = unit + int\times
                 (unit + int \times \alpha \times \alpha)\times
                 (unit + int \times \alpha \times \alpha)
   = unit + int\times
                 (unit + int\times
                          (unit + int \times \alpha \times \alpha)\times
                          (unit + int \times \alpha \times \alpha))\times
                 (unit + int\times
                          (unit + int \times \alpha \times \alpha)\times
```

(unit + int $\times \alpha \times \alpha$))

We could *unwind* the equation:

```
\alpha = \mathsf{unit} + \mathsf{int} \times \alpha \times \alpha
   = unit + int\times
                 (unit + int \times \alpha \times \alpha)\times
                 (unit + int \times \alpha \times \alpha)
   = unit + int\times
                 (unit + int\times
                          (unit + int \times \alpha \times \alpha)\times
                          (unit + int \times \alpha \times \alpha)) \times
                 (unit + int\times
                          (unit + int \times \alpha \times \alpha)\times
                          (unit + int \times \alpha \times \alpha))
```

We could *unwind* the equation:

```
\alpha = \mathsf{unit} + \mathsf{int} \times \alpha \times \alpha
   = unit + int\times
                 (unit + int \times \alpha \times \alpha)\times
                 (unit + int \times \alpha \times \alpha)
   = unit + int\times
                 (unit + int\times
                          (unit + int \times \alpha \times \alpha)\times
                          (unit + int \times \alpha \times \alpha))\times
                 (unit + int\times
                          (unit + int \times \alpha \times \alpha)\times
                          (unit + int \times \alpha \times \alpha))
```

If we take the limit of this process, we have an infinite tree.

Infinite Types

Think of this as an infinite labeled graph whose nodes are labeled with the type constructors \times , +, **int**, and **unit**.

This infinite tree is a solution of our equation, and this is what we take as the type **tree**.

μ Types

We'll specify potentially-infinite solutions to type equations using a finite syntax based on the *fixed-point type constructor* μ .

$$\mu\alpha.\tau$$

$$\alpha = \mathcal{V}$$

$$\alpha = uu + iu + x \times x \times x$$

(

μ Types

We'll specify potentially-infinite solutions to type equations using a finite syntax based on the *fixed-point type constructor* μ .

$$\mu\alpha.\tau$$

Here's a **tree** type satisfying our original equation:

tree
$$\triangleq \mu \alpha$$
. unit $+$ int $\times \alpha \times \alpha$.

(

Static Semantics (Equirecursive)

We'll define two treatments of recursive types. With *equirecursive types*, a recursive type is equal to its unfolding:

Static Semantics (Equirecursive)

We'll define two treatments of recursive types. With equirecursive types, a recursive type is equal to its unfolding:

 $\mu\alpha$. au is a solution to $\alpha= au$, so:

$$\mu\alpha. \tau = \tau \{\mu\alpha. \tau/\alpha\}$$

Two typing rules let us switch between folded and unfolded:

$$\frac{\Gamma \vdash \mathbf{e} : \tau\{\mu\alpha.\,\tau/\alpha\}}{\Gamma \vdash \mathbf{e} : \mu\alpha.\,\tau} \; \mu\text{-Intro}$$

$$\frac{\Gamma \vdash e : \mu\alpha.\tau}{\Gamma \vdash e : \tau\{\mu\alpha.\tau/\alpha\}} \; \mu\text{-elim}$$

7

Isorecursive Types

Alternatively, *isorecursive types* avoid infinite type trees.

The type $\mu\alpha$. τ is distinct but transformable to and from $\tau\{\mu\alpha,\tau/\alpha\}$.

Isorecursive Types

Alternatively, *isorecursive types* avoid infinite type trees.

The type $\mu\alpha$. τ is distinct but transformable to and from $\tau\{\mu\alpha,\tau/\alpha\}$.

Converting between the two uses explicit **fold** and **unfold** operations:

$$\mathbf{unfold}_{\mu\alpha.\,\tau} : \mu\alpha.\,\tau \to \tau\{\mu\alpha.\,\tau/\alpha\}$$
$$\mathbf{fold}_{\mu\alpha.\,\tau} : \tau\{\mu\alpha.\,\tau/\alpha\} \to \mu\alpha.\,\tau$$

Static Semantics (Isorecursive)

The typing rules introduce and eliminate μ -types:

$$\begin{split} \frac{\Gamma \vdash e : \tau\{\mu\alpha.\,\tau/\alpha\}}{\Gamma \vdash \mathbf{fold}\,e : \mu\alpha.\,\tau} \; & \mu\text{-INTRO} \\ \frac{\Gamma \vdash e : \mu\alpha.\,\tau}{\Gamma \vdash \mathbf{unfold}\,e : \tau\{\mu\alpha.\,\tau/\alpha\}} \; & \mu\text{-ELIM} \end{split}$$

Dynamic Semantics

We also need to augment the operational semantics:

Intuitively, to access data in a recursive type $\mu\alpha$. τ , we need to **unfold** it first. And the only way that values of type $\mu\alpha$. τ could have been created is via **fold**.

Example

Here's a recursive type for lists of numbers:

$$\mathbf{intlist} \triangleq \mu \alpha. \, \mathbf{unit} + \mathbf{int} \times \alpha.$$

Example

Here's a recursive type for lists of numbers:

$$\mathsf{intlist} \triangleq \mu \alpha.\,\mathsf{unit} + \mathsf{int} \times \alpha.$$

Here's how to add up the elements of an **intlist**:

Recursive types let us encode the natural numbers!

Recursive types let us encode the natural numbers!

A natural number is either 0 or the successor of a natural number:

$$\mathsf{nat} \triangleq \mu \alpha.\,\mathsf{unit} + \alpha$$

Recursive types let us encode the natural numbers!

A natural number is either 0 or the successor of a natural number:

$$\mathbf{nat} \triangleq \mu \alpha. \, \mathbf{unit} + \alpha$$
$$\mathbf{0} \triangleq \mathbf{fold} \, (\mathsf{inl}_{\mathbf{unit} + \mathbf{nat}} \, ())$$

Recursive types let us encode the natural numbers!

A natural number is either 0 or the successor of a natural number:

```
\begin{aligned} & \text{nat} \triangleq \mu \alpha. \, \text{unit} + \alpha \\ & 0 \triangleq \text{fold} \, (\text{inl}_{\text{unit+nat}} \, ()) \\ & 1 \triangleq \text{fold} \, (\text{inr}_{\text{unit+nat}} \, 0) \\ & 2 \triangleq \text{fold} \, (\text{inr}_{\text{unit+nat}} \, 1), \\ & \vdots \end{aligned}
```

Recursive types let us encode the natural numbers!

A natural number is either 0 or the successor of a natural number:

$$\begin{aligned} & \text{nat} \triangleq \mu \alpha. \, \text{unit} + \alpha \\ & 0 \triangleq \text{fold} \, (\text{inl}_{\text{unit+nat}} \, ()) \\ & 1 \triangleq \text{fold} \, (\text{inr}_{\text{unit+nat}} \, 0) \\ & 2 \triangleq \text{fold} \, (\text{inr}_{\text{unit+nat}} \, 1), \\ & \vdots \end{aligned}$$

The successor function has type $\mathbf{nat} \to \mathbf{nat}$:

$$(\lambda x : \mathbf{nat.} \ \mathbf{fold} \ (\mathsf{inr}_{\mathbf{unit}+\mathbf{nat}} \ x))$$

Recall Ω defined as:

$$\omega \triangleq \lambda x. x x$$

 Ω was impossible to type... until now!

Recall Ω defined as:

$$\omega \triangleq \lambda x. x x$$

$$\Omega \triangleq \omega \ \omega$$
.

 Ω was impossible to type... until now!

x is a function. Let's say it has the type $\sigma \to \tau$.

Recall Ω defined as:

$$\omega \triangleq \lambda x. x x$$

$$\Omega \triangleq \omega \ \omega$$
.

 Ω was impossible to type... until now!

x is a function. Let's say it has the type $\sigma \to \tau$.

x is used as the argument to this function, so it must have type σ .

Recall Ω defined as:

$$\omega \triangleq \lambda x. x x$$

$$\Omega \triangleq \omega \ \omega$$
.

 Ω was impossible to type... until now!

x is a function. Let's say it has the type $\sigma \to \tau$.

x is used as the argument to this function, so it must have type σ .

So let's write a type equation:

o let's write a type equation:
$$\sigma = \sigma \to \tau$$

$$(\lambda x : \mu \wedge x \to 2 \cdot (\mu \wedge b \cup x) \times x) :$$

$$(\mu \wedge x \to 2 \cdot (\mu \wedge b \cup x) \times x) :$$

Putting these pieces together, the fully typed ω term is:

$$\omega \triangleq \lambda x : \mu \alpha. (\alpha \to \tau). \text{ (unfold } x) x$$

$$\mu \alpha. (\alpha \to \tau) \quad \longrightarrow \quad \mathbf{Z}$$

Putting these pieces together, the fully typed ω term is:

$$\omega \triangleq \lambda x : \mu \alpha. (\alpha \rightarrow \tau). (unfold x) x$$

The type of ω is $(\mu\alpha.(\alpha \to \tau)) \to \tau$.

So the type of **fold** ω is $\mu\alpha$. ($\alpha \to \tau$).

Putting these pieces together, the fully typed ω term is:

$$\omega \triangleq \lambda x : \mu \alpha. (\alpha \rightarrow \tau). (unfold x) x$$

The type of ω is $(\mu\alpha.(\alpha \to \tau)) \to \tau$.

So the type of **fold** ω is $\mu\alpha$. ($\alpha \to \tau$).

Now we can define $\Omega = \omega$ (**fold** ω). It has type τ .

We can even write ω in OCaml:

```
# type u = Fold of (u -> u);;
type u = Fold of (u -> u)
# let omega = fun x -> match x with Fold f -> f x;;
val omega : u -> u = <fun>
# omega (Fold omega);;
...runs forever until you hit control-c
```

Encoding λ -Calculus

With recursive types, we can type everything in the untyped lambda calculus!

Encoding λ -Calculus

With recursive types, we can type everything in the untyped lambda calculus!

Every λ -term can be applied as a function to any other λ -term. So let's define an "untyped" type:

$$U \triangleq \mu\alpha. \alpha \rightarrow \alpha$$

$$U \Rightarrow U$$

$$V = U$$

$$V \Rightarrow U$$

Encoding λ -Calculus

With recursive types, we can type everything in the untyped lambda calculus!

Every λ -term can be applied as a function to any other λ -term. So let's define an "untyped" type:

$$U \triangleq \mu \alpha. \, \alpha \to \alpha$$

dx: tree. C

The full translation is:

Every untyped term maps to a term of type *U*.