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Programming Languages & Logics

Lecture 27
Recursive Types



Recursive Types

Many languages support data types that refer to themselves:

Java

class Tree {
Tree leftChild, rightChild;
int data;
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Recursive Types

Many languages support data types that refer to themselves:

Java

class Tree {
Tree leftChild, rightChild;
int data;

¥

OCaml

type tree = Leaf | Node of tree * tree * int

A-calculus?

tree = unit + int x tree x tree



Recursive Type Equations

We would like tree to be a solution of the equation:

a=unit+intxax o

However, no such solution exists with the types we have so far...
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Unwinding Equations

We could unwind the equation:

a=unit+int x a X
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Unwinding Equations

We could unwind the equation:

a=unit+int x a x a
= unit + intx
(unit +int x a x a)x
(unit + int X a X «)
= unit + intx
(unit + intx
(unit +int x o x a)x
(unit +int x a x o)) x
(unit + intx
(unit + int x o x a)x
(unit +int x a x «))

If we take the limit of this process, we have an infinite tree.



Infinite Types

Think of this as an infinite labeled graph whose nodes are
labeled with the type constructors x, +, int, and unit.

This infinite tree is a solution of our equation, and this is what
we take as the type tree.
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j1 Types

We’ll specify potentially-infinite solutions to type equations
using a finite syntax based on the fixed-point type constructor .
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j1 Types

We’ll specify potentially-infinite solutions to type equations
using a finite syntax based on the fixed-point type constructor .

po. T

Here’s a tree type satisfying our original equation:

tree £ . unit + int x o x a.



Static Semantics (Equirecursive)

We’ll define two treatments of recursive types. With
equirecursive types, a recursive type is equal to its unfolding:
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Static Semantics (Equirecursive)

We’ll define two treatments of recursive types. With
equirecursive types, a recursive type is equal to its unfolding:

Ca st é 0(

-

pa. T is a solution to o = 7, so:

po. T = T{pa. 7/a}

Two typing rules let us switch between folded and unfolded:

Me: r{ua.7/a}
-e:pa.T

U~INTRO

e:pa.T
Mee: m{pa.7/a}

H-ELIM



Isorecursive Types

Alternatively, isorecursive types avoid infinite type trees.

The type pa. 7 is distinct but transformable to and from
T{pa. 7/}
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Isorecursive Types

Alternatively, isorecursive types avoid infinite type trees.

The type pa. 7 is distinct but transformable to and from
T{pa. 7/}

Converting between the two uses explicit fold and unfold
operations:

unfold,, - : pa.7 — T{pa.7/a}
fold,, . : 7{pa.7/a} — pa.t
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Static Semantics (Isorecursive)

The typing rules introduce and eliminate p-types:

M-e: m{ua.7/a}
N-folde: pa. 7

U~INTRO

[Fe:pa.T
[+ unfolde : 7{ua.7/a}
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Dynamic Semantics

We also need to augment the operational semantics:

EAcTE v

unfold (folde) — e

Intuitively, to access data in a recursive type ua. 7, we need to
unfold it first. And the only way that values of type ua. 7 could
have been created is via fold.
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Example

Here’s a recursive type for lists of numbers:

intlist £ ;. unit + int x a.
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Example

Here’s a recursive type for lists of numbers:

intlist £ ;0. unit + int x a.

Here’s how to add up the elements of an intlist:

let sum = —
A = MoK
fix (\f:intlist — intlist @/ vt - M @
f

Al intlist. case unfold
(A\u : unit. 0)
| (\p : int x intlist. (#1p) + f(#2p)))



Encoding Numbers

Recursive types let us encode the natural numbers!
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Recursive types let us encode the natural numbers!

A natural number is either 0 or the successor of a natural
number:

nat £ pa. unit + o
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2 = fold (inrynitnat 1),
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Encoding Numbers

Recursive types let us encode the natural numbers!

A natural number is either 0 or the successor of a natural
number:

nat £ pa. unit + o
0 £ fold (inlunit+nat ()
1 = fold (inrynitsnat 0)
2 = fold (inrynitnat 1),

The successor function has type nat — nat:

(A\x : nat. fold (inrypit-nat X))



Self-Application and Q2

Recall 2 defined as:
wE M XX

Q was impossible to type... until now!

lI>
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Self-Application and Q2

Recall 2 defined as:

Q0
(>

wE M XX W w.
Q was impossible to type... until now!
xis afunction. Let’s say it has the type o — 7.

xis used as the argument to this function, so it must have type o.



Self-Application and Q2

Recall 2 defined as:

lI>

WM XX Q
Q was impossible to type... until now!
xis afunction. Let’s say it has the type o — 7.
xis used as the argument to this function, so it must have type o.

So let’s write a type equation:




Self-Application and Q2

Putting these pieces together, the fully typed w term is:
w2 M pa. (o — 7). (unfold x) x

/,m. (a-v¥) ™ &

fold A ‘>
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Self-Application and Q2

Putting these pieces together, the fully typed w term is:

w2 M pa. (o — 7). (unfold x) x

Thetypeofwis (pa. (« = 7)) — 7.

So the type of fold w is pa. ( — 7).
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Self-Application and Q2

Putting these pieces together, the fully typed w term is:

w2 M pa. (o — 7). (unfold x) x

Thetypeofwis (pa. (« = 7)) — 7.
So the type of fold w is pa. ( — 7).

Now we can define Q = w (fold w). It has type 7.
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Self-Application and Q2

We can even write w in OCaml:

# type u = Fold of (u -> w);;

type u = Fold of (u -> u)

# let omega = fun x -> match x with Fold f -> f x;;
val omega : u -> u = <fun>

# omega (Fold omega);;

...runs forever until you hit control-c




Encoding A-Calculus

With recursive types, we can type everything in the untyped
lambda calculus!

M"’“:M

/0“.0(—:?0(

16



Encoding A-Calculus

With recursive types, we can type everything in the untyped
lambda calculus!

Every A-term can be applied as a function to any other A-term.
So let’s define an “untyped” type:

UZ poa— a
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Encoding A-Calculus

With recursive types, we can typegyervthing jn the untyped
lambda calculus! ,= Le.{/ o <Cee

. . "écg
Every A-term can be applied as a function to any other A-term.
So let’s define an “untyped” type:

UZ poa— a
>\,('.élu . €
[ 2 x e it

[eo 1] £ (unfold [eo]) [e1]
[\x.e] £ fold \x : U. [e]

The full translation is:

Aot pa,

Every untyped term maps to a term of type U.



