
CS411 Recitation 1
Introduction to Standard ML

R. Pucella

5 Feb 2001

For the programming assignments in this course, we will be using the programming language
Standard ML. If you took CS312 last semester (Fall 2000), you should already be familiar with
the language. Otherwise, we will expect you to pick it up in the coming weeks. We will only be
using the basic features of the language, so this should not be a problem. The course web page
has references to tutorial material on Standard ML. You should read them. We will be using a
particular implementation of Standard ML, calledStandard ML of New Jersey(SML/NJ). Again,
the web page contains links to the software and tutorial information.

Before we start our overview of the language, a bit of propaganda is in order. Why are we using
ML instead of a language that you are more likely to be familiar with? Although one is tempted to
answer that learning new languages is a great way to expand your horizons and learn new ways of
thinking about problems, the real reason is more pragmatic. In this course, we will discuss formal
semantics of programming languages. Often times, the programming assignments will take the
form of interpreters for various toy languages that we will use to experiment with features we will
have seen in class. The fact is that ML was originally designed to be a language in which it would
be easy to do just that sort of thing: ML stands forMeta-Language, which is just Greek shorthand
for a language used to talk about other languages.

On to the language. ML is fundamentally an interactive language: the user is faced with
a prompt, types an ML expression, the ML compiler evaluates the expression, and spits out an
answer. Sometimes, there are side-effects to evaluating the expression, such as printing something
on the screen, or popping up a user interface. But the basic mechanism is the same. Expressions
can be simple (a line of code), or huge (a 100000+ lines compiler). ML features are meant to ease
the burden of managing such large expressions (a.k.a. programs).

1 Basic expressions and types

The language is defined by specifying what expressions can be written and how they evaluate to
produce a result. The simplest kind of expression is just a value, such as0, 1, 2, ∼1, true, false,
”hi” . An important point is that every value in ML has a uniquetype. Thus,0, 1,∼1 have typeint
(for integers),trueandfalsehave typebool (for booleans),”hi” has typestring (for strings). There
is a special value(), which is the only value of typeunit. Values simply evaluate to themselves.
You can try it out from the SML/NJ compiler prompt:

1

- 1;
val it = 1 : int
- true;
val it = true : bool

Notice that the compiler returns both the evaluated value and the type of the result. Also, notice
the use of the semicolon:a semicolon is used to indicate to the compiler that it should evaluate the
result. It is not formally part of the expression to evaluate.

More complex expressions can be written. By extension, every expression gets a type, which is
the type of the result. The expressionif 〈e1〉 then〈e2〉 else〈e3〉 first evaluates the expression〈e1〉;
if it evaluates totrue, then〈e2〉 is evaluated as the result, otherwise〈e3〉 is evaluated as the result.
Note that〈e1〉 should evaluate to a boolean values, that is should have typebool. Similarly, both
〈e2〉 and〈e3〉 should have the same type, and the type of the wholeif expression has the type of
〈e2〉 and〈e3〉. A type erroroccurs if these constraints are not respected. For example:

- if 1 then "a" else "b";
stdIn:20.1-20.23 Error: case object and rules don’t agree [literal]

rule domain: bool
object: int
in expression:

(case 1
of true => "a"

| false => "b")

This indicates (if you decode the error message...) that the compile was expecting a boolean, but
found an integer.

Operations are available on booleans, integers and strings. The operationnot takes a boolean
and returns the negated boolean. The operations+ , -, * , >, >=, <, <=, = are the standard infix
operations on integers. Notice that the arithmetic operations return integers, while the comparison
operations return booleans. For instance:

- 42 + 42;
val it = 84 : int
- 42 > 42;
val it = false : bool

The operationssizeandˆ are available for strings, and respectively return the size of a string and
the concatenation of two strings.

- size "foo";
val it = 3 : int
- "foo"ˆ"bar";
val it = "foobar" : string

2

2 Declarations

Now that we know how to evaluate simple expressions, it makes sense to assign name to the results,
so they are easily reused. Adeclarationassociates (or binds) a name with a value. A global
declaration is made at the prompt, and is valid for as long as the compiler is running, or until
another global declaration with the same name is made. A global declaration uses the keyword
val:

- val a = 42 * 42;
val a = 1764 : int
- a + 42;
val it = 1806 : int

Sometimes, you need a binding to hold only for the duration of the evaluation of an expression.
You can use a local binding for that (these are akin to local variables in traditional language).
The syntax for a local declaration islet 〈d〉 in 〈e1〉 end. This is an expression. To evaluate this
expression, you first evaluate the declaration, which is of the formval 〈id〉 = 〈e2〉, bind the result
of evaluating〈e2〉 to 〈id〉, and then evaluate〈e1〉. The binding for〈id〉 is forgotten after the result
is returned.

- let val n = size "this is a string" in n + 10 end;
val it = 26 : int

Another kind of declaration is afunction declaration. A function is a function like in any other
language. A function declaration has the form:fun f (x1:t1,x2:t2,...):t =〈e〉, wheref is the name of
the function,x1, x2, ... are the parameters to the function,t1, t2, are the types of the parameters,
t is the type of the result, and the expression〈e〉 is the body of the function. For example, consider
the standard factorial function (which is recursive):

- fun fact (n:int):int = if (n=0) then 1 else n * fact (n-1);
val fact = fn : int -> int

Notice the type of the result, which states thatfact is a function of typeint − > int, a function
expecting an integer and returning an integer. To use a function, you need to apply it to arguments.
A function application (or function call) has the formf (〈e1〉,〈e2〉,...). The arguments are first
evaluated to values, and then the functionf is called with those values.

- fact (10);
val it = 3628800 : int
- fact (5+5);
val it = 3628800 : int

Type-checking ensures that the type of the arguments corresponding to the types expected by the
function (given in the declaration), and that the result of the function is used appropriately. Can
you spot the type errors in the following fragments?

3

- fact ("hi");
stdIn:40.1-40.12 Error: operator and operand don’t agree [tycon mismatch]

operator domain: int
operand: string
in expression:

fact "hi"
- if (fact (10)) then 0 else 1;
stdIn:1.1-38.26 Error: case object and rules don’t agree [tycon mismatch]

rule domain: bool
object: int
in expression:

(case (fact 10)
of true => 0

| false => 1)

Note that since function declarations are declarations, they can appear in the declaration part
of a let expressions.

3 Datatypes

ML allows you to define your own types. Such types are calleddatatypes, and you define them by
specifying how to construct values of that type. For example, suppose we wanted to define a type
for Peano integers. Recall that a Peano integer is either a zero or a successor of a Peano integer.
We could define such a type as follows:

- datatype peano = Z | S of peano;
datatype peano = S of peano | Z

(The compiler simply echoes back the definition, modulo some reorder). This defines a new type
peano, and twoconstructors, Z andS, to construct values of that type. The constructorZ is a
nullary constructor, meaning it doesn’t expect an argument. We can verify thatZ is a value of the
appropriate type:

- Z;
val it = Z : peano

The constructorS is a constructor of one argument, and construct apeanovalue given another
peanovalue. For instance:

- S (Z);
val it = S Z : peano
- S (S (Z));
val it = S (S Z) : peano

So we can construct values of our new type. How do we use them however? To be able to use
a value of typepeano, we need to be able to deconstruct it. Acaseexpression is used to determine
which constructor was used to build a value, and proceed accordingly. Here is a simple function
that takes apeanovalue and returns a string stating what kind of value it is:

4

- fun whatKind (p:peano):string =
case (p)

of Z => "zero"
| S (p’) => "successor";

val whatKind = fn : peano -> string
- whatKind (Z);
val it = "zero" : string
- whatKind (S (S (Z)));
val it = "successor" : string

Notice that each branch of acaseexpression contains one of the constructors of the datatype. For
constructors with an argument, we can specify an identifier which will get bound to the argument
of the constructor. In the above example, that identifier (p’) is not used. In the following function,
which takes apeanovalue and converts it to an integer, it is:

- fun toInt (p:peano):int =
case (p)

of Z => 0
| S (p’) => 1 + toInt (p’);

val toInt = fn : peano -> int
- toInt (Z);
val it = 0 : int
- toInt (S (S (S (S (Z)))));
val it = 4 : int

We will use datatypes extensively in this course, to model abstract syntax.

4 Modules

We will not really use the prompt to define our programs. Instead, we will put our declarations
in files, and load them appropriately. A good programming principle is to package related things
together. ML provides a state-of-the-art module system to manage such packaging. A module
(also called a structure) wraps together related declarations. A module is declared as follows:

structure Foo = struct
val bar = 42
fun talkToMe ():int = bar

end

This declares a simple module namedFoo, with declarationsbar and talkToMe. To access the
values or functions in that module, we use the dot-notation:

- Foo.bar;
val it = 42 : int
- Foo.talkToMe ();
val it = 42 : int

5

It is possible to associate asignaturewith a module, which specify which declarations should be
exportedfrom a module. For example, the signature

signature FOO = sig
val talkToMe : unit -> int

end

can be ascribed to the moduleFooas follows:

structure Foo2 : FOO = struct
val bar = 42
fun talkToMe ():int = bar

end

The net result is thatFoo2only exportstalkToMeto the outside world. The valuebar is now only
available inside the module:

- Foo2.talkToMe ();
val it = 42 : int
- Foo2.bar;
stdIn:72.1-72.9 Error: unbound variable or constructor: bar in

path Foo2.bar

We will use modules extensively to structure our code.1 SML/NJ provides aCompilation Man-
ager (CM) to manage code written using modules. Information will be provided in programming
assignments, and pointers to documentation are available from the course web page.

5 And the rest...

Standard ML provides a many more features than has been described today. The goal today was
to review the basic, and to provide a feel for the language. ML provides tuples, records, lists,
supports parametric polymorphism, higher-order functions, and a host of buzzwords that you will
be learning about in this course.

1Pun fully intended.

6

