
CS411 Problems 6

A. Demers

26 Apr { due 3 May

The two questions in the assignment both treat the untyped object calculus

de�ned in Chapter 6 of [Abadi and Cardelli] and discussed in lecture. The

syntax is reproduced here:

e ::= x

j [ : : : mi � &(xi)ei : : : ]

j e:m

j e:m &(x)e

Here m, mi, : : : are method names, while x, xi, : : : are parameter names bound

to self when a method is invoked.

1 Static Scope Evaluation Rules

In class we presented evaluation rules for the untyped object calculus given

above. Our rules implemented dynamic scope, which admittedly was a bad

idea. Fix this. That is, give static scope evaluation rules for the untyped object

calculus.

tu

2 Compiling the Object Calculus

In this question you are to de�ne a \compile" function for untyped object calcu-

lus terms, analogous to the compile function we presented in lecture for IMPX

expressions.

Assume a target language similar to the one we used in lecture. Speci�cally, a

variable or memory location contains either an int or a pointer to an item in a

(garbage-collected) heap. An item is a record with the following �elds:

1



link: pointer

len: int

id[0..len]: int

val[0..len]: pointer

An item is created by a call of the form

newitem(n)

This returns a pointer to a newly created item with the len �eld set to n and

all other �elds set to zero (for int �elds) or nil (for pointer �elds). If you wish,

you may provide a second parameter from which the link �eld will be initiated;

e.g.

newitem(n; v)

which is convenient for code sequences like

sp  newitem(1; sp); sp.val[0]  : : :

Assume that any parameter or attribute label can be represented as a nonzero

integer.

The target language provides arithmetic, \pointer-chasing," if - then - else,

simple loops (if you want), and labels with computed goto statements. For

example, a sequence like

sp.link.val[1]  L1;

goto sp.val[0];

textrmL1 :

might appear in the code generated for method invocation.

You should pattern your compile function after the one presented in lecture.

You will almost certainly need an eval-stack (represented as a list with head sp)

and an environment stack (represented as a list with head ep). Object values

themselves should be stored as items in the heap; and you'll probably want to

store each method as a separate item containing an hep; ipi pair.

Just as for IMPX, the compile function should be de�ned by induction on the

structure of the term being compiled; and it will need an additional argument

representing the lexical environment. You don't need to prove anything about

your function, but you should describe it in enough detail that we are able to

grade it sensibly.

tu

2


