
CS411 Probs 3

A. Demers

27 Feb 2001 { due 6 Mar 2001

These problems deal with the following tiny language fragment LiTL:

e ::= n j (e1�e2) j (let x � e1 in e2) j x

LiTL includes arithmetic expressions and let blocks and little else. In par-

ticular there are no program variables or assignments, and no nonterminating

constructs.

Question 1 [8 points] Give de�nitions by recursion on LiTL expressions for

each of the following:

(a) FV (e1) { the free variables of expression e1.

(b) [e2=x](e1) { substitution of e2 for x into e1 with capture allowed.

(c) [e2==x](e1) { \safe" (capture-avoiding) substitution of e2 for x

into e1.

Before answering part (c) you should look at Question 2 { it may a�ect your

answer.

Question 2 [10 points] Recall an expression is said to be closed if it has no

free variables. Prove that the two notions of substitution de�ned in Question 1

coincide when the expression e1 being substituted is closed. That is, prove

(FV (e1) = ;) ) (8x; e2)([e1=x](e2) � [e1==x](e2))

This result should be intuitively clear { without free variables, capture cannot

happen anyway, so it shouldn't matter whether we try to avoid it.

1



Discussion: In the remaining questions we'll explore eager and lazy evaluation

rules for LiTL using a slightly di�erent approach from the notes.

First we de�ne an environment that is suitable for any of the evaluation strate-

gies. That is, an environment � is a �nite set

� = f: : : xi � hni; ei; �ii : : :g

of bindings of names to both numbers (i.e., evaluated expressions) and expres-

sion - environment pairs (i.e. unevaluated expressions).

The intuition is that we can simultaneously keep track of both the lazy and

eager versions of the environment, and prove something about how they are

related in any derivation.

Because LiTL has no assignments, there is no need for a store in the evaluation

relation; thus it has the form

he; �i !E n

The subscript \E" on!E indicates \eager." Later we'll discuss \lazy dynamic"

(!D) and \lazy static" (!S) evaluation relations as well.

Keeping this in mind, here are eager evaluation rules for LiTL:

hn; �i !E n
(E1)

he1; �i !E n1 he2; �i !E n2

h(e1�e2); �i !E n
where n = n1�n2 (E2)

he1; �i !E m he2; (�� fx � hm; e1; �ig)i !E n

h(let x � e1 in e2); �i !E n
(E3)

hx; �i !E n
where (x � hn; e0

; �
0i) 2 � (E4)

These are straightforward eager evaluation rules except for the fact that in

rule E3 we insert a copy of the unevaluated expression e1 and its associated

environment � into the environment of the hypothesis, even though none of

the other rules ever refers to this information. Clearly this carrying around of

\syntactic history" has no e�ect on the derivability relation.

(End of Discussion)

2



Question 3 [8 points] We would like to show that the eager rules obey the

following Completeness Property for closed expressions: If e is closed, then

(FV (e) = ;) ) (9n)(8�)(he; �i ! n)

This is most easily proved by proving the following somewhat stronger property:

Proposition (completeness of eager rules):

dom(�) � FV (e) ) (9n)he; �i !E n

This can be proved by induction on the structure of LiTL expressions, with a

case for each constructor. Give the proof.

Question 4 [8 points] It is possible to change the above rules to give either lazy

dynamic scope behavior, de�ning an evaluation relation!D, or lazy static scope

behavior, de�ning an evaluation relation !S . This can be done by changing

only the identi�er-reference rule (E4). Give revised rules (D4) and (S4) that

accomplish this.

Question 5 [6 points] Show by example that the dynamic (Dx) and static

(Sx) rules disagree (even in this tiny language from which nontermination and

assignment have been omitted). That is, give an expression e such that

he; fgi !D n and he; fgi !S m

where m 6= n. Note fg is the initial empty environment, a.k.a. the empty set.

Question 6 [10 points] We de�ne an environment � to be consistent if

(x � hn; e0
; �

0i) 2 � ) he0
; �

0i !E n

that is, the evaluated and unevaluated versions of the bindings in � agree.

Use this de�nition, and the fact that an empty environment is consistent, to

prove that the eager and static rules agree; that is,

he; fgi !E n ) he; fgi !S n

for any closed expression e.

3


