
CS411 Probs 2

9 Feb 2001 - due 20 Feb 2001

For this problem set, you will be asked to work with an interpreter forIMP that
we have provided for you on the web site. The interpreter is implemented in SML.
To use the interpreter, download the fileimp.sml , put it in some working directory,
fire up SML/NJ, set the working directory,1, then evaluateuse "imp.sml" . This
loads the structureImp . (Note that everytime you modifyimp.sml , you will need to
useit again if you want to test your modifications.) To start the interpreter, evaluate
Imp.run () . Try out someIMP expressions. For example,X <- 10 , or Y <-
25; skip; if true then X <- 1 else X <- 2 . (Syntax-wise, all key-
words are lowercase, assignment is written<- , the boolean NOT operator is written
! , the boolean AND operator is written&&, and the boolean OR operator is written
|| .) Note that after every evaluation, the state is printed. Every evaluation occurs in
the state as returned by the previous evaluation.

Download and study the interpreter. Structurally, it is straightforward. It is simply
a loop, that awaits aIMP command from the user, parses it into abstract syntax,2 and
applies the small-step semantic reduction rules repeatedly until the empty command
signaling termination is encountered.

The abstract syntax is represented by values of a datatype (three datatypes in fact,
com, aexp , bexp , representing the three syntactic classes ofIMP). You will want to
review Harper’s notes on datatypes. Because of this representation using datatypes, the
functions to apply reduction rules (applyComRule , applyAExpRule , applyB-
ExpRule) use pattern matching to figure out which rule to apply. Again, you will
want to review Harper’s notes on pattern matching. Note that the order of the patterns
is important. The first pattern that matches is selected. Look at the implementation of
the rules for arithmetic expressions to see an illustration of this. In general, you will
want to compare the small-step reduction rules ofIMP with the code, to see how we
implemented the reductions.

For this problem set, you will be asked to add new commands to the interpreter, by
adding code to implement new reduction rules. The interpreter already knows about
the new commands. So you don’t have to worry about parsing or anything like that.
However, the interpreter cannot evaluate (or reduce) such commands. That’s where
you come in.

1If you stored the file in directoryc: \foo \bar , change the working directory of SML/NJ by evaluating
OS.FileSys.chDir "c: \foo \bar" . Use forward slashes under Unix, as usual.

2The details of the parser are beyond the scope of this course, so don’t worry about it. It’s a monadic
parser, if you’re curious.

1

1. Once a language has while-loops, it is a simple matter to add support for repeat-
loops. Consider extendingIMP with a new command:

c ::= · · · | repeat c until b

Intuitively, this says to repeatedly executec until the conditionb evaluates to
true. We can provide a small-step semantics for this rule by doing the same kind
of trick we did for the while-loop: rewrite it into an equivalent command in the
language. You can check that the following reduction rule does what we want:

〈repeat c until b, σ〉 →1 〈c; while ¬b do c, σ〉

TheIMP interpreter already supports the syntax for repeat-loops. Implement the
above reduction rule in the interpreter.

2. Here is an extension ofIMP that models a form of non-local control transfer,
like exceptions (in Java or ML) or setjmp/longjmp (for the C hackers).

We add the following two rules to theIMP syntax for commands:

c ::= · · · | try c0 catch c1 | throw

Usually, a try-block command of the formtry c0 catch c1 is equivalent toc0;
the associatedcatch phrasec1 is not executed. However, if athrow command
is executed anywhere insidec0, control proceeds to the catch phrasec1 of the
innermost enclosing try-block. For example, the command:

X ← 1; try Y ← 2;X ← 2 catch skip

results in a state where bothX andY are2. On the other hand:

X ← 1; try Y ← 2; throw ;X ← 2 catch skip

results in a state whereX is 1 andY is 2, and:

X ← 1; try Y ← 2; throw ;X ← 2 catchY ← 1

results in a state whereX is 1 andY is 1.

Write small-step semantics reduction rules for commandstry c0 catch c1 and
throw .

TheIMP interpreter already supports the syntax for such commands. Implement
your reductions rules in the interpreter.

2

