
CS411 Probs 1

A. Demers

1 Feb 2001 – due 8 Feb 2001

1. Let c be the IMP program

X ← 1; while X ≤ 1 do X ← X + 1

Using the large-step rules from Lecture Notes 1, show a derivation of

〈c, σ〉 → σ[2/X]

You may use “obvious” facts about states, for example the fact that

σ[m/X][n/X] = σ[n/X]

Argue that the derivation does not depend on the initial state σ.

Note we have recently added names to the large-step rules in the on-line
lecture notes.

2. For the same IMP program c as in the previous question, but using the
small-step rules from Lecture Notes 2, show all the derivations involved in
the computation

〈c, σ〉 →1 〈c1, σ1〉 →1 . . . →1 〈, σ[2/X]〉

Again, we have added names for the small-step rules in the on-line lecture
notes.

3. (See Winskel Exercise 2.11) Suppose we want to extend IMP to allow
expression evaluation to update the state and potentially fail to terminate.
A simple way to do this is to add a construct

a ::= (c0 resultis a0)

The intended meaning is: to evaluate such a command in state σ you
should first execute command c0 in state σ, resulting in a possibly-updated
state σ′; you should then evaluate arithmetic expression a0 in state σ′.

Show how to extend the small-step rules for IMP to incorporate this new
construct.

1

4. Now consider extending the large-step rules to handle the resultis con-
struct. In this case you have a lot more to do. In particular, if arithmetic
expression evaluation can affect the state, then you will need an arithmetic
expresion evaluation relation of the form

〈a, σ〉 → 〈n, σ′〉

Since evaluating a Boolean expression may require evaluating one or more
arithmetic subexpressions (for example if a ≥ b then . . .) you will need
a Boolean expression relation with a similar form

〈b, σ〉 → 〈t, σ′〉

and all the expression rules must be updated to carry around the updated
states.

Work out the details.

5. Up to now we have treated states as arbitrary functions on locations; that
is

Σ = Loc→ N

Consider the set of finite states – informally, states in which at most a
finite number of locations contain nonzero values.

Define this concept formally – that is, give an inductive definition of a set
F ⊂ Σ that corresponds to the finite states described informally above.

Prove the following by induction on derivations:

(σ ∈ F ∧ 〈c, σ〉 → σ′) =⇒ σ′ ∈ F

This is the (presumably) obvious fact that a (finite) terminating program
execution can update only finitely many locations in the store.

2

