
CS411 Prelim 1 Solutions

A. Demers

15 Mar 2001

Question 1: Consider a language of expressions over two types:

� ::= int j real

n 2N integers 1; 2; 3; : : :

r 2 R reals 3:1415926; 6:02E23; : : :

e ::= n j r j (e1�e2)

Semantically there are two versions of each operator:

�N is N �N ! N and �R is R�R! R

In source programs both versions of the operator are represented by the same

symbol �. No (implicit or explicit) type conversions or mixed-mode arithmetic

are supported.

(a) Give a set of typing rules for this language.

(solution a) There are the natural axioms for int and real constants:

` n : int ` r : real

and for each operator � there are two rules that precisely re
ect the types of

the two versions of the operator �N and �R:

` e1 : int

` e2 : int

` (e1�e2) : int

` e1 : real

` e2 : real

` (e1�e2) : real

There are no \mixed mode" rules.

1

(b) Give examples of correctly typed int and real expressions, and an example

of a type-incorrect expression.

(solution b) Of course the constants are correctly typed, so

` 1 : int ` 3:1415926 : real

No mixed mode rules exist, so the expression

1 + 3:1415926

is type-incorrect.

(c) We now introduce the subtype relation int � real, and add the simple type

checking rule

` e : int

` e : real

to re
ect the subtype relation. Using this rule, give an expression that can be

typed as either int or real. Give another expression that can be typed only as

real, but in at least two di�erent ways.

(solution c) The subtype rule above explicitly allows any int expression to

be \promoted" to real; thus even an integer constant expression will do:

` 1 : int ` 1 : real

works �ne as a solution to the �rst part. For a real expression that can be

typed in two ways, consider (1.0+(1/3)). This expression necessarily must be

given type real because the left operand 1.0 is a real constant. Thus, the right

subexpression (1/3) must be promoted to real. This can be done in two ways:

...

` 1 : real ` (3) : real

` 1=3 : real

or

...

` 1 : int ` (3) : int

` (1=3) : int

` 1=3 : real

Note the �rst case promotes the operands of / to real before performing the

division; the second case does int division and then promotes the int result to

real.

2

(d) Assuming the evaluation rules always use whichever one of �N or �R is

required by the type of the expression being evaluated, use your second example

from part (c) to show the semantics is not coherent { that is, that the value of

a type correct expression can depend on how the type annotation was derived.

(solution d) In the �rst typing of (1.0+(1/3)) above, the division (1/3) is

performed in the real type, so the quotient is 0:333 : : : and the entire expression

evaluates to 1:333 : : :. In the second typing, the division is performed in the int

type, so the int quotient is 0 whether rounding or truncation is used, and the

entire expression evaluates to 1:0.

(e) Fix the problem identi�ed in part (d). That is, give a revised set of

type rules for this language that guarantee unique typing. (Your rules should

guarantee unique typing, but you don't need to prove they do so. Also, your

rules needn't (indeed, can't) produce every possible typing, as long as they

assign some valid type to every legal expression.)

(solution e) Given that there are only two types in this language, this ques-

tion sounds a lot harder than it is. Just remove the subtyping rule, and add

mixed mode computation rules that promote expressions to real only when

forced to { that is, only when at least one of the operands is forced to be real.

This introduces two new rules for each operator:

` e1 : int

` e2 : real

` (e1�e2) : real

` e1 : real

` e2 : int

` (e1�e2) : real

This re
ects the choice that the quotient of two int expressions will be evaluated

as an int (thus do truncation or rounding) rather than as a real. Since, as we

showed in part d, di�erent typings can produce di�erent values, it is inescapable

that we make some such choice. tu

Question 2: Consider the following three integer expression languages Lpar ,

Lnd and Lorcl . All three languages include the following expression constructors:

e ::= n j (e1; e2) j (e1�e2) j (a e1) j (a ")

with the interpretations we usually give to these constructors. Note in partic-

ular the presence of assignable variables (side-e�ects). Each language has one

additional distinguishing constructor. These are:

Lpar : e ::= par(e1; e2)

3

The intended meaning is to evaluate e1 and e2 in parallel, returning the result

value of e2.

Lnd : e ::= nd(e1; e2)

The intended meaning is nondeterministically to choose to evaluate and return

either e1 or e2 (but not both).

Lorcl : e ::= orcl(e1; e2)

The intended meaning is to evaluate whichever one of e1 and e2 will return the

value 0 (but not both). It is as if an oracle tells you in advance what the result

of an expression evaluation will be { hence the language name. If neither e1 nor

e2 can evaluate to 0, the evaluation fails; if both e1 and e2 evaluate to 0, one

expression is chosen arbitrarily.

Now, given these three languages,

(a) For which of the languages would LS (large step) evaluation rules be ap-

propriate? For which would SS (small step) rules be appropriate? For which

would either style work? Justify your answers brie
y.

(solution a) We discussed the equivalent of Lpar in lecture to motivate SS

rules { since the language includes assignment, concurrent expression evalua-

tions could interfere with one another through their e�ects on the store, and a

small step semantics is required to expose intermediate states.

Rules for Lnd could be either SS or LS { the evaluation rules for nd(e1; e2) are

essentially the same as those for if with the hypotheses about the condition

value eliminated. This can be expressed with either SS or LS rules.

For Lorcl , note that choosing to evaluate the �rst subexpression of an orcl

construct requires a hypothesis of the form

he1; �; �i ! h0; �0i

giving the result of a complete evaluation of e1. Such a hypothesis can be

expressed in LS rules but not in SS rules.

4

(b) Show how to simulate a conditional expression

if e1 then e2 else e3

in Lorcl . You may use assignments and as many new variable names as you wish

to implement your simulation, and you may use whatever arithmetic operators

you need. As usual assume e1 nonzero for true, zero for false. Hint: note the

expression

orcl(1=0; 0)

reduces to 0 in spite of the division by zero in e1.

(solution b) We introduce two variables, c to hold the value of the condition

part and a to hold the answer.

c e0;

orcl(((a e2); (1� c=c)); ((a e3); c));

a

(c) Give either LS or SS evaluation rules for Lorcl .

(solution c) By part (a), these will be LS rules. Since there are no binding

constructs, no environment is required. The store is as usual

� = f: : : ai � ni : : :g

and judgements look like

he; �i ! hn; �0i

Rules for the common constructors are completely vanilla:

hn; �i ! hn; �i

he1; �i ! hn1; �00i

he2; �00i ! hn2; �0i

h(e1; e2); �i ! hn2; �
0i

5

he1; �i ! hn1; �
00i

he2; �00i ! hn2; �0i

h(e1�e2); �i ! hn; �0i

where n = (n1�n2)

he1; �i ! hn1; �0i

h(a e1); �i ! hn1; �
0 � fa � n1gi

h(a "); �i ! hn; �i

where (a � n) 2 �

This leaves us with the interesting two rules, the ones for orcl:

he1; �i ! h0; �0i

horcl(e1; e2); �i ! h0; �0i

he2; �i ! h0; �0i

horcl(e1; e2); �i ! h0; �0i

The amusing thing to note { large step rule(s) are expressive enough to make a

choice based on whether that choice will succeed, that is, they can choose which

of e1 or e2 to evaluate based on what the outcome of the evaluation will be. tu

Question 3: Here is yet another little language

e ::= n j (e1; e2)

j (catch) e1 in e2) j throw

j (let x � e1 in e2) j x

This language does not have assignable variables. It has let blocks just like

we've been using all along. The catch block is similar to the one discussed in

the �rst programming problem, but with e1 and e2 reordered to be similar to

the let block. The meaning of

catch) e1 in e2

is to produce the value of e2 unless e2 executes a throw, in which case it

produces the value of e1. Thus

catch) 1 in 2 ! 2

catch) 1 in (throw; 3) ! 1

These simple examples leave many unanswered questions.

We have discussed eager and lazy evaluation strategies for e1 in a let block.

There is a similar concept of eager or lazy evaluation of e1 in a catch block. In

fact, all four possibilities make sense. So we de�ne four di�erent interpretations

for our language:

6

LEE = eager let, eager catch.

LEL = eager let, lazy catch.

LLE = lazy let, eager catch.

LLL = lazy let, lazy catch.

(a) Show (by giving short example programs) that all six possible pairs of

languages are di�erent; that is show

LEE 6= LEL LEL 6= LLL

LEE 6= LLE LLE 6= LLL

LEE 6= LLL LLE 6= LEL

by giving example programs that evaluate di�erently. Assume static scope is

used for let blocks if you wish (you don't need this assumption { examples

exist that are independent of the scope rule used). It is possible to answer

this question with only two simple example programs, or even a single (more

complicated) one.

(solution a) Here is a solution using two expressions. Consider

E1 = (catch) 1 in (catch) throw in 2))

This expression reduces to 1 if catch block evaluation is eager and 0 if catch

block evaluation is lazy, independent of how let blocks are evaluated. Thus,

LEE ; LLE : E1 ! 1 LEL; LLL : E1 ! 2

so E1 shows

LEE 6= LEL LLE 6= LLL

LEE 6= LLL LLE 6= LEL

For the remaining two distinctions, consider

E2 = (catch) 1 in (let x � throw in 2))

7

Note in the catch phrase the expression e1 (=1) is a closed value; thus the

behavior of E2 does not depend on whether catch phrase evaluation is eager or

lazy. Thus, Thus,

LEE ; LEL : E2 ! 1 LLE ; LLL : E1 ! 2

so E2 shows

LEE 6= LLE LEL 6= LLL

LEE 6= LLL LEL 6= LLE

which includes the two distinctions that were not covered by E1.

(b) Give a set of LS lazy dynamic scope evaluation rules de�ning LLL. Show

that your rules correctly reduce

let x � throw in (catch) 1 in x)

to 1 (not throw).

(solution b) These will be LS rules with an environment but no store. The

environment will be

� = f: : : ai � ei : : :g

and judgements will take the form

he; �i ! v

where the values are

v 2 (N [fthrowg)

The rules are

hn; �i ! n

he1; �i ! n1

he2; �i ! n2

h(e1; e2); �i ! n2

8

he2; �i ! n2

h(catch) e1 in e2); �i ! n2

he2; �i ! throw

he1; �i ! v

h(catch) e1 in e2); �i ! v

hthrow; �i ! throw

he2; (�� fx � e1g)i ! v

h(let x � e1 in e2); �i ! v

he; �i ! v

hx; �i ! v

where (x � e) 2 �

These rules do indeed reduce the expression in question to 1. The important

path in the derivation tree is

hlet x � throw in (catch) 1 in x); fgi ! 1

generates the hypothesis

h(catch) 1 in x); fg � fx � throwgi ! 1

which generates the two hypotheses

h1; �i ! 1 and hx; fg � fx � throwgi ! throw

and it is easy to �ll in the details.

(c) (A thought question) We have discussed static versus dynamic scope for

let blocks. Does the same concept exist for catch blocks? What would it mean

to say that catch blocks use static (or dynamic) scope? You (almost certainly)

won't be able to write down evaluation rules for this, but you might give some

examples and argue for what they should return under a static or dynamic scope

interpretation.

9

(solution c) A statically scoped interpretation for throw would use the near-

est enclosing catch around the de�nition rather than the execution of the throw

{ this makes sense only for a throw that occurs inside the bound expression of

a lazily evaluated let. An expression to consider is

catch) 1 in

let x � throw in

((catch) 2 in x); 3)

The rules of part (b) do lazy evaluation of let bindings and dynamic scope for

catch. Under these rules, the evaluation of x does a throw. This is caught by

the innermost catch phrase, which produces 2. Execution continues in the \;"

composition, evaluating 3 and producing that as the �nal result.

Under static catch scoping rules, a throw from inside x would be caught by

the outermost catch phrase. Evaluation of 3 would be skipped entirely, and the

�nal result would be 1. This is perfectly sensible behavior, and very diÆcult to

capture with the style of semantic rules we have been using. tu

10

