
CS411 Translating LS to SS

A. Demers

8 Mar 2001

These are notes on the translation from large-step to small-step rules discussed
in class on 6 March.

1 A Language Fragment

Here is a small language fragment with enough features to illustrate the trans-
lation.

Types

τ ::= int | var(τ) | fun(τ1)τ2

There are numbers, variables and function types.

Expressions

e ::= n | aτ

| e1θe2

| (if e1 then e2 else e3)

| e1 ← e2 | (e1 ↑)
| (let x1 ∼ e1 in e2) | x
| (λ x : τ . e1) | e1(e2)

There are numbers, assignable variables, conditionals, let binding and functions.

Intuitively, all this behaves like the language described in Notes 10. In partic-
ular, you should look there for the definitions of the set V of values and B of
bindable values.

1

2 Typing Rules

The typing rules can almost be taken directly from Notes 10.

Constants

π ` n : int
(T.1)

π ` (aτ) : var(τ)
(T.2)

Operators

π ` e1 : τ1 π ` e2 : τ2
π ` (e1θe2) : τ

θ is τ1 × τ2 → τ (T.3)

Control Structures

π ` e1 : bool π ` e2 : τ π ` e3 : τ

π ` (if e1 then e2 else e3) : τ
(T.4)

Assignable Variables

π ` e1 : var(τ) π ` e2 : τ

π ` (e1 ← e2) : τ
(T.5)

π ` e1 : var(τ)
π ` (e1 ↑) : τ

(T.6)

Let Bindings

π ` e1 : τ1
(π ⊕ {x : τ1}) ` e2 : τ
π ` let x ∼ e1 in e2) : τ

(T.7)

π ` x : τ
where x : τ ∈ π (T.8)

2

Functions

(π ⊕ {x : τ ′}) ` e : τ

π ` (lambda x : τ ′ dot e) : fun(τ ′)τ
(T.9)

π ` e1 : fun(τ2)τ π ` e2 : τ2
π ` e1(e2) : τ

(T.10)

3 Large Step Rules

Here are large step rules – the eager evaluation, static scope version. Again
these are almost exactly a subset of the rules from Notes 10.

Constants

〈n, φ, σ〉 → 〈n, σ〉 (LS.1)

〈aτ , φ, σ〉 → 〈aτ , σ〉 (LS.2)

Operators

〈e1, φ, σ〉 → 〈v1, σ1〉
〈e2, φ, σ1〉 → 〈v2, σ2〉
〈e1θe2, φ, σ〉 → 〈v, σ2〉

where v = v1θv2 (LS.3)

Control Structures

〈e1, φ, σ〉 → 〈0, σ1〉
〈e3, φ, σ1〉 → 〈v3, σ

′〉
〈(if e1 then e2 else e3), φ, σ〉 → 〈v3, σ

′〉
(LS.4)

〈e1, φ, σ〉 → 〈v, σ1〉
〈e2, φ, σ1〉 → 〈v2, σ

′〉
〈(if e1 then e2 else e3), φ, σ〉 → 〈v2, σ

′〉
where v 6= 0

(LS.5)

3

Assignable Variables

〈e1, φ, σ〉 → 〈aτ , σ1〉
〈e2, φ, σ1〉 → 〈v2, σ2〉

〈e1 ← e2, φ, σ〉 → 〈v2, σ2 ⊕ {aτ ∼ v2}〉
(LS.6)

〈e1, φ, σ〉 → 〈aτ , σ1〉
〈e1 ↑, φ, σ〉 → 〈v, σ1〉

where aτ ∼ v ∈ σ1 (LS.7)

Let Bindings

〈e1, φ, σ〉 → 〈v1, σ1〉
〈e2, (φ⊕ {x ∼ v1}), σ1〉 → 〈v, σ′〉
〈(let x ∼ e1 in e1), φ, σ〉 → 〈v, σ′〉

(LS.8)

〈x, φ, σ〉 → 〈v, σ〉 where(x ∼ v) ∈ φ (LS.9)

Functions

〈(lambda x : τ dot e), φ, σ〉 → 〈(lambda x : τ dot e), φ, σ〉
if FV (e) ⊆ {x}

(LS.10)

〈(lambda x : τ dot (let y ∼ v in e)), φ, σ〉 → 〈v′, σ′〉
〈(lambda x : τ dot e), φ, σ → 〈v′, σ′〉

where y is the least element of FV (e)− {x}
and (y ∼ v) ∈ φ

(LS.11)

〈e1, φ, σ〉 → 〈(lambda x : τ dot e3), σ1〉
〈e2, φ, σ1〉 → 〈v2, σ2〉

〈e3, (φ⊕ {x ∼ v2}), σ2〉 → 〈v, σ′〉
〈e1(e2), φ, σ〉 → 〈v, σ′〉

(LS.12)

4 LS to SS Translation

Here is the nearly-mechanical procedure I outlined in class for generating SS
rules from LS rules.

4

Judgements the LS and SS rules have essentially the same form:

〈e, φ, σ〉 → 〈e′, σ′〉

except that for the large step rules e′ is always a value, while in the small step
rules it can be any expression. In particular, judgements in the small step rules
do not need to produce an updated environment. Updates to the environment
happen in subgoals (hypotheses), just as in the large step rules. This will (I
hope) become clear in the sequel.

Our large step rules explicitly state that a value reduces to itself; that is, rules
(LS.1), (LS.2) and (LS.10) of the previous section together are equivalent to the
single rule

〈v, φ, σ〉 → 〈v, σ〉

Such rules do not appear in the small step semantics – instead, the notion of a
complete evaluation is defined as a sequence of steps terminating in a value.

Of the remaining large step rules, nearly every one has the following form, which
we shall call a “type (A) rule” below:

〈e1, φ1, σ0〉 → 〈v1, σ1〉
· · ·

〈ei, φi, σi−1〉 → 〈vi, σi〉
· · ·

〈ek, φk, σk−1〉 → 〈vk, σk〉
〈C[e1, . . . , ek]φ, σ〉 → 〈v, σ′〉

(A)

where

σ = σ0 and σ′ = S(σk, {. . . vj . . .})
v = F (φ, σk, {. . . vj . . .})
φi = H(φ, σi−1, {vj |j < i})

Here S, F and H are functions with only the explicitly specified dependencies.

In general, rules have instantiation conditions, such as

where v = v1θv2

in (LS.3), or

where (aτ ∼ v) ∈ σ1

5

in (LS.7). Well, we did say the translation was almost mechanical – it will
usually, but not always, be obvious how such conditions should be inherited by
the small step rules we generate.

The way the stores σi are used in the hypotheses of a type (A) rule – the ith

hypothesis evaluates ei taking the store from σi−1 to σi – enforces an evaluation
order on the subexpressions. We have written the “constructor”

C[e1, . . . , ek]

(which is almost always a single constructor of the language syntax) to make
this evaluation order explicit. In addition, we require that each expression ei
actually occurs as a subexpression of C[e1, . . . , ek], so that from an instance of
the constructor we can uniquely identify the ei.

Each type (A) large step rule is translated to a collection of small step rules of
two forms.

The first form assumes the first (i − 1) subexpressions have been completely
evaluated, and takes a single step in evaluating the ith subexpression:

〈ei, φi, σ〉 →1 〈e′i, σ′i〉
〈C[v1, . . . , vi−1, ei, ei+1, . . . , ek], φ, σ〉

→1 〈C[v1, . . . , vi−1, e
′
i, ei+1, . . . , ek], σ′i〉

(A1)

Such rules eventually reduce C[. . .] so that all subexpressions are values. A
second form of translated rule applies in this case:

〈C[v1, . . . , vk], φ, σ〉 →1 〈v, σ′〉
where σ′ = S(σk, {. . . vj . . .}) and v = F (φ, σk, {. . . vj . . .})

(A2)

Such a rule produces a final value v and eliminates the occurrence of the con-
structor C.

In our language fragment there are only a few rules that depart from the general
type (A) form.

First are the rules for conditionals. Consider Rule (LS.4):

〈e1, φ, σ〉 → 〈0, σ1〉
〈e3, φ, σ1〉 → 〈v3, σ

′〉
〈(if e1 then e2 else e3), φ, σ〉 → 〈v3, σ

′〉

The if statement has three subexpressions, but the rule hypotheses evaluate
only two of them. The value of the condition subexpression determines which

6

two (and thus determines whether rule (LS.4) or (LS.5) is applicable). The
translation above does not quite work on these rules, because at some point
either the then clause e2 or the else clause e3 needs to disappear, and our
translation never does this. The problem is not difficult to fix, however. You’ll
be asked to do so below.

A second departure from type (A) form is the rule (LS.11) for evaluating a
lambda expression:

〈(lambda x : τ dot (let y ∼ v in e)), φ, σ〉 → 〈v′, σ′〉
〈(lambda x : τ dot e), φ, σ → 〈v′, σ′〉

where y is the least element of FV (e)− {x}
and (y ∼ v) ∈ φ

Here the hypothesis evaluates an expression that is not a subexpression of the
conclusion. This can be viewed as an instance of a more general form

〈G(e, φ, σ), φ, σ〉 → 〈v, σ′〉
〈e, φ, σ〉 → 〈v, σ′〉

(B)

which not surprisingly we shall call a “type (B)” rule. The intuition is that the
transformed expression G(e, φ, σ) is completely equivalent to e for evaluation in
φ and σ, and the transformation from e to G(e, φ, σ) makes “progress.” (For
the lambda expression rule, “progress” means descending in the well founded
ordering defined by subset inclusion on the set of free variables of the lambda
expression.)

To translate a type (B) rule, we simply add a small step rule that performs the
transformation from e to G(e, φ, σ) as an evaluation step:

〈e, φ, σ〉 →1 〈G(e, φ, σ), φ, σ〉
(B1)

The final departure from type (A) is rule (LS.12) for applying a lambda ex-
pression:

〈e1, φ, σ〉 → 〈(lambda x : τ dot e3), σ1〉
〈e2, φ, σ1〉 → 〈v2, σ2〉

〈e3, (φ⊕ {x ∼ v2}), σ2〉 → 〈v, σ′〉
〈e1(e2), φ, σ〉 → 〈v, σ′〉

This rule fails to be type (A) for the subtle reason that e3, the function body,
does not appear in the conclusion of the rule, hence cannot occur as a subex-
pression of C[e1, e2, e3] as required for the translation to be used. We’ll deal
with this as a special case in the next section.

7

5 Small Step Rules

Here we present small step rules constructed using (A) and (B) from the previous
section. The rule numbering will follow that for the large step rules.

Constants. These rules define values; there are no corresponding rules in the
SS semantics.

Operators. Rule (LS.3) is an instance of (A). So by (A1) we generate the
rules

〈e1, φ, σ〉 →1 〈e′1, σ′〉
〈(e1θe2), φ, σ〉 →1 〈(e′1θe2), φ, σ′〉

(SS.3.A1.1)

and

〈e2, φ, σ〉 →1 〈e′2, σ′〉
〈(v1θe2), φ, σ〉 →1 〈(v1θe

′
2), φ, σ′〉

(SS.3.A1.2)

By (A2) we generate the single rule

〈(v1θv2), φ, σ〉 →1 〈v, φ, σ〉 where v = (v1θv2) (SS.3.A2.1)

Note the condition v = (v1θv2) from (LS.3), which is inherited by this rule but
not necessary for rules (SS.3.A1.*).

Control Structures. Rules (LS.4) and (LS.5), do not quite fit form (A), but
their translations are not difficult. They are left as exercises.

Assignable Variables. Rule (LS.6) is type (A), and its translation is left as a
straightforward exercise. Rule (SS.7) is also type (A), but with an instantiation
condition. The translations are

〈e1, φ, σ〉 →1 〈e′1, σ′〉
〈(e1 ↑), φ, σ〉 →1 〈(e′1 ↑), σ′〉

(SS.7.A1.1)

〈(v1 ↑), φ, σ〉 →1 〈v, σ′〉 where(v1 ∼ v) ∈ σ (SS.7.A2.2)

Note the instantiation condition “where (v1 ∼ v) ∈ σ” is inherited from (LS.7)
in rule (SS.7.A2.2), but is not relevant to rule (SS.7.A2.1).

8

Let Bindings. Rule (LS.8) is also type (A):

〈e1, φ, σ〉 →1 〈e′1, σ′〉
〈(let x ∼ e1 in e2), φ, σ〉 →1 〈(let x ∼ e′1 in e2), σ′〉

(SS.8.A1.1)

〈e2, (φ⊕ {x ∼ v1}), σ〉 →1 〈e′2, σ′〉
〈(let x ∼ v1 in e2), φ, σ〉 →1 〈(let x ∼ v1 in e′2), σ′〉

(SS.8.A1.2)

〈(let x ∼ v1 in v2), φ, σ〉 →1 〈v2, σ〉 (SS.8.A2.1)

Rule (LS.9) also fits form (A), though this may be a bit counterintuitive. Note
there is no subexpression in the constructor – it consists of a single identifier.
Think of it as a 0-ary constructor

Cx[] ≡ x

Embedding the identifier x into the constructor is not any different here from
the previous rule, where the constructor

Cx[e1, e2] ≡ (let x ∼ e1 in e2)

also included x.

Since (LS.9) has no subexpressions and no hypotheses, we generate the single
rule

〈x, φ, σ〉 →1 〈v, σ〉 where(x ∼ v) ∈ σ (SS.9.A2.1)

Functions. Rule (LS.10) defines function values; there is no corresponding
rule in the SS semantics.

Rule (LS.11) was the motivation for our definition of type (B) above. By (B.1)
it gives rise to the small step rule

〈(lambda x : τ dot e), φ, σ〉
→1 〈(lambda x : τ dot (let y ∼ v in e)), σ〉

where y is the least element of FV (e)− {x}
and (y ∼ v) ∈ φ

(SS.11.B.1)

Again note the instantiation condition inherited from (LS.11).

9

Finally we reach rule (LS.12), which defines function application. This rule
fails to be type (A) because of the function body, which does not occur in the
conclusion of the rule. We shall treat e1 and e2 just as if the entire rule fit form
(A). Then we’ll use the knowledge that e3 must appear inside the function value
v1 to split the remainder of the function application into a pair of ad hoc rules.

〈e1, φ, σ〉 →1 〈e′1, σ′〉
〈e1(e2), φ, σ〉 →1 〈e′1(e2), σ′〉

(SS.12.A1.1)

〈e2, φ, σ〉 →1 〈e′2, σ′〉
〈v(e2), φ, σ〉 →1 〈v1(e′2), σ′〉

(SS.12.A1.2)

〈e3, (φ⊕ {x ∼ v2}), σ〉 →1 〈e′3, σ′〉
〈(lambda x : τ dot e3)(v2), φ, σ〉

→1 〈(lambda x : τ dot e′3)(v2), σ′〉
(SS.12.1)

〈(lambda x : τ dot v3)(v2), φ, σ〉 →1 〈v3, σ〉 (SS.12.2)

This completes the small step rule translation.

6 Collected Exercises

Exercise 1: Give the translation of (LS6).

Exercise 2: Give the translation of (LS4).

Exercise 3: Show that the LS and SS semantics agree by evaluating the ex-
pression

let x ∼ aint
1 in

(lambda y : int dot y + (x ↑))(
(let x ∼ 7 in (aint

1 ← x)))

using both sets of rules.

10

