
CS411 Object Calculus

A. Demers

14 May 2001

What the lambda calculus is for traditional function-based programming lan-

guages, the object calculus is for OO languages. In these Notes we present

the untyped and simply typed versions of Abadi and Cardelli's object calculus.

We relate these to the lambda calculus and to the OO language features we

discussed previously in an IMPX context.

1 Syntax and Evaluation Rules

The syntax of the untyped object calculus is as follows:

e ::= x

j [: : : mi � &(xi)ei : : :]

j e:m

j e:m &(x)e

Informally, an object consists of a tuple of names methods. Each method has

the form

m � &(x)e

with the &(x) portion serving as a binding occurrence of the symbol x. The

&(x) indicates functional abstraction, much like � x in the lambda calculus.

However, a method invocation e:m does not bind x to an arbitrary argument

expression, as function application does in the lambda calculus. In fact, there

is no argument expression; the parameter x is simply bound to the object from

which the method was selected. The �nal form,

e:m &(x)e

constructs a new object identical to the object denoted by e except that the

method m has been replaced as speci�ed.

Based on that intuitive description, here is a simple set of evaluation rules:

1

Values

hv; �i ! v

A value reduces to itself in any environment.

Identi�ers

hx; �i ! v

if (x � v) 2 �

An identi�er is evaluated by looking it up in the environment.

Method invocation

he; �i ! [: : :mj � &(xj)ej ; : : :] � v
0

hej ; �� fxj � v
0gi ! v

he:mj ; �i ! v

To evaluate a method invocation, �rst evaluate the containing object

expression e to obtain an object value v0. Then evaluate the method

body ej in an environment in which the self parameter xj has been

bound to v
0.

Method update

he; �i ! [: : :mj � &(xj)ej ; : : :]

he:mi &(x)e0
; �i ! [mi � &(x)e0

; : : : ; mj � &(xj)ej ; : : :]

j 2 f1::ng� fig

To update method mi in object e, �rst evaluate e to produce some

object value v, then construct and return a new object identical to

v but with mi replaced by &(x)e0.

The above rules are very natural. Unfortunately, they are very similar to the �rst

set of rules given for IMPX, and like them give a dynamic scope interpretation

of the calculus. Consider the follwing example:

[a � &(z)0; b � &(x)[a � &(z)1; c � &(y)(x:a); d � &(x)(x:c)]:d]:b

2

(Here \0" and \1" can be any pair of distinct terms.) We introduce abbreviations

A and B for the inner and outer objects in the example:

A � [a � &(z)1; c � &(y)(x:a); d � &(x)(x:c)]

B � [a � &(z)0; b � &(x)A:d]

The entire term is simply

B:b

Should this term reduce to 0 or to 1? Intuitively, under a static scope interpre-

tation it should reduce to 0, because the free occurrence of x in the body of c

should be bound to the entire object B. However, in the invocation of c from

within d, the evaluation rules given above allow the free occurrence of x to be

captured by the parameter of d. The essential parts of the derivation are.

h1; fx � Bg � fx � Ag � fy � Ag � fz � Agi ! 1

hx:a; fx� Bg � fx � Ag � fy � Agi ! 1

hx:c; fx� Bg � fx � Agi ! 1

hA:d; fx � Bgi ! 1

hB:b; ;i ! 1

The subgoal of evaluating \x.c" with fx � Ag at the top of the type assignment

stack is where the problem arises.

We would much prefer a static scope interpretation for the object calculus.

One way to achieve this is to eliminate the environment altogether, and give

rules that rely on outermost substitution of closed terms to avoid capture and

achieve static scope. A viable set of rules follows. For these rules a value v is

any irreducible closed expression { that is, a closed object constructor { and all

judgements produce only closed terms.

Values

v ! v

A value reduces to itself.

3

Method invocation

e ! v
0

([v0
=xj](ej)) ! v

e:mj ! v

where v
0 � [: : : ; mi � &(xi)ei; : : :]

To invoke method mj from object e, �rst reduce e to a closed value

v
0, then evaluate the method body ej after substituting v

0 for the

self parameter xj.

Method update

e ! [m1 � &(x1)e1; : : : ; mn � &(xn)en]

(e:mi &(x)e0) ! [mi � &(x)e0
; : : : ;mj � &(xj)ej ; : : :]

where j 2 f1::ng� fig

To update method mi in object e, �rst reduce e to a closed value,

then construct the new object in whichmi is replaced by &(x)e
0. Note

the requirement that the expressions in the judgement are closed

implies that e0 has no free variables other than x.

Intuitively these rules behave like outermost �-reduction. If we apply the rules

to the example above, using the same abbreviations A anb B as before, the

essential branch of the derivation tree is

0 ! 0

[([B=x](A))=y](([B=x](x:a))) � B:a ! 0

[([B=x](A))=x](x:c) � ([B=x](A)):c ! 0

[B=x](A:d) � ([B=x](A)):d ! 0

B:b ! 0

Because all substitutions involve closed terms, capture does not occur, and the

rules de�ne a static scope semantics for the calculus.

Unfortunately, this approach does not lend itself to direct implementation in

the style of the \Simple Runtime and Compilation" notes distributed earlier.

4

2 Relation to Untyped Lambda Calculus

There is a straightforward translation of the untyped lambda calculus into the

untyped object calculus that preserves reductions (though not the � conver-

sion rule), demonstrating that the object calculus, like the lambda calculus, is

Turing-complete.

Recall the syntax of the lambda calculus:

e ::= x j �x:e j e1(e2)

Intuitively, a lambda term �x:e and a method &(x)e are quite similar functional

abstractions. The essential di�erence is the restriction on the parameter imposed

by the object calculus. In an invocation of a lambda term, the parameter

x may be bound to an arbitrary term. In an invocation of a method, the

parameter x may be bound only to the object from which the method was

selected. Fortunately, it is easy to get around this apparent limitation, by

exploiting the \tupling" capability of the object calculus. In the translation

of a lambda application into object calculus, we simply use object update to

store the parameter value in a well known attribute of the translated object.

The method body can access the argument by selection from the method's self

parameter.

We de�ne the translation T [[�]] of untyped lambda terms into terms of the un-

typed object calculus by induction on the structure of lambda terms as follows:

Identi�ers

T [[x]] = x

Identi�ers are unchanged.

Lambda

T [[�x:e]] = [a � &(x)x:a; v � &(x)([x:a=x](T [[e]]))]

A lambda term is mapped to an object with attributes a (which will

eventually hold the argument value) and v (a method that will be

invoked to compute the value of an application). These are used

cooperatively in the translation of an application.

5

Application

T [[e1(e2)]] = ((T [[e1]]):a &(y)T [[e2]]):v

As discussed above, the translation of an application constructs the

translation of the function part e1, then updates the a method to

a & term that will evaluate to the translation of the argument e2.

Finally, it invokes the v method to produce the translation of the

result value.

Note the a attribute is not absolutely necessary in the translation of a lambda

term. The body of v does include a reference to x:a, but no translated lambda

term ever invokes the v method directly from a translated lambda term. That

is, no invocations have the form

(T [[e]]):v

Instead, the invocations are all of the form

((T [[e1]]):a &(y)T [[e2]]):v

It is perfectly all right to \update" the a attribute of an object that does not

(yet) have an a attribute. So by the time the v method is invoked an a attribute

will exist. Nevertheless, we leave the a attribute in the translation of a lambda

term, so later we can use the translation rules for the typed system.

Correctness of the above translation is shown by the following theorem, which

can be proved by induction on derivations.

Theorem. Let e1 and e2 be terms in the untyped lambda calculus, and let

T be the translation of untyped lambda calculus terms into untyped object

calculus as de�ned above. Then

T [[e1]]!o T [[e2]] , e1 !� e2

where the reduction relations!o and!� refer to the object and lambda calculi,

respectively. tu

6

3 Functional vs Imperative Interpretations

In most real-world OO languages, attribute update is imperative. In a method

update expression of the form

(e1:m &(x)e2)

the object denoted by e1 is updated \in place" { subsequent invocations of the

m method of the original object will see the new de�nition. In contrast, we

have de�ned the object calculus functionally { that is, without side e�ects. The

method update expression above produces an entirely new object with the new

de�nition of m; subsequent invocations of the m method of the original object

continue to use the original de�nition.

3.1 Distinguishable

With lazy reduction rules it is not altogether trivial to write an expression that

demonstrates the di�erence between these two strategies; but it is possible.

Consider the term

[a � &(x)A; b � &(x)((x:a &(y):x:a):a)]:b

where A is an arbitrary convergent term. Using the static scope reduction

rules given above, which are functional, this expression reduces to A. With

an imperative interpretation, however, the expression would diverge. We can

argue this only informally, since we haven't given a formal semantics for the

imperative case. The argument goes like this: in the invocation of the b method,

both instances of x in

((x:a &(y):x:a):a)

are bound to the same (initial) object. After executing the (imperative) update

of method a, the state looks like

x � [a � &(y)x:a b � &(x)((x:a &(y):x:a):a)]

The body of x:a is an invocation of x:a, and thus the evaluation diverges.

7

3.2 Imperative is Order Dependent

Intuitively, attribute update \in place" seems similar in power to an assignable

store. Recall that assignments in IMPX make the result of evaluation more

dependent on evaluation order { speci�cally, they make it possible for a con-

vergent expression to produce di�erent values under eager and lazy evaluation

rules. A similar phenomenon obtains in the imperative object calculus. For this

example, we extend the calculus with let expressions, as they make the example

a lot shorter. Let A and B be any two distinct object calculus terms. Consider

let x � [a � &(s)A] in

let y � x:a &(s)B in

x:a

With an imperative semantics, evaluation of the expression bound to y will

update the object bound to x \in place." Thus, if let blocks are evaluated

eagerly, the �nal result x:a will see the e�ect of the inner let block expression,

and produce the value of B. Using lazy evaluation, the bound expression of the

inner let block will never be evaluated at all (since y is not referenced), and the

result value will be A.

8

