
CS411 Objects I

A. Demers

13 May 2001

In these Notes we discuss class-based object-oriented languages. This is roughly

the material in Chapters 2-3 of Abadi and Cardelli, and is presented at a similar

level of informality. We concentrate on class-based languages. Issues about

object-based languages (the subject of Abadi and Cardelli Chapter 4 and the

subject of Riccardo's lecture of April 26) are mentioned only briey.

1 Introduction to Classes and Objects

Here is the �rst example of an Object-Oriented (OO) program from Abadi and

Cardelli, translated into a syntax close to the one we've been using:

class cell f

v : var int;

get : method()intf self:v g;

set : method(x : int)intf self:v x g

g in : : :

Intuitively this de�nes a class of objects each of which has an integer compo-

nent v and functional components get and set which respectively interrogate

and update the value of v. Conventionally, value components like v are called

\�elds," and functional components are called \methods."

The syntax for using �elds and methods is similar to that for using components

of product types, so the above program fragment could continue

: : : f

let c � newobj(cell) in

c:a 11;

c:set(c:get+ 6);

c:get();

g

1

Within the body of a method, the special name self refers to the \current"

object instance { the one fromwhich the current method invocation was selected.

Semantically, the usual way to think of self is as an implicit hidden parameter,

which is bound at method invocation time like any other parameter. This

interpretation has serious implications for type checking, as we'll see below.

Our general syntax for class de�nitions is the following:

class C f

: : :

fi : var �i;

: : :

mj :method(xj : �
0

j)�
00

j fejg

: : :

g in e

Intuitively, a class de�nition describes a set of objects, so classes are related to

types.

At a very high level, a type de�nes a set of values and some operations that you

know how to apply a priori to those values.

With objects the responsibility is divided di�erently. Each object contains its

operations (or methods) in itself. The object conforms to a signature, which

describes what operations are to be expected and (recursively) what their types

are.

You can think of an object as a record (an element of a product type) with

components of two kinds: �elds are var components of some type (possibly

itself an object type); methods are procedure or function valued components

that have implit access to the object instance that contains them.

To support classes and objects we make a number of extensions to our expression

language. The �rst is objecct constructions themselves:

e ::= newobj(C)

Here C is a class name, not a type. Each class de�nition C implicitly determines

a type for the objects that are \of class C." We'll call this type the instance type

of C, and denote it by IT (C). We'll discuss possible choices for IT (�) below.

In a formal set of type rules we would expect

� ` newobj(C) : IT (C)

2

where � is some generalization of a type assignment that reects the class dec-

laration for C.

The reserved word self is an expression:

e ::= self

In the body of a method m in class C, the name self refers to the current

instance { the object from which m was selected and invoked. Thus, we expect

� ` self : IT (C)

where � is the type assignment used to type the body of class de�nition C.

A �eld can be selected from an object:

e ::= e:fi

This has the same interpretation as selection from a value of a product type.

For its typing rule, we expect

� ` e : IT (C)

� ` e:fi : �i

Method invocation involves a combination of selection and application:

e ::= e:mj(e
0)

This invokes selects method mj from object e, then invokes it passing the argu-

ment e0. For the typing rule, we expect

� ` e : IT (C)

� ` e
0 : �

0

j

� ` e:mj : �
00

j

Note that a method selection like e:mj is not by itself a well formed (or well

typed) expression.

3

2 Embedding in IMPX

Here is a slightly more formal treatment of the description given above. We

show how the object mechanism described thus far can be translated to IMPX

in a type-correct way.

The important trick is to exploit the intuition that self behaves like an implicit

parameter to each method. We translate each method in a class de�nition to a

pre-method, in which the self parameter is made explicit. Of course, this will

result in the methods described by the type IT (C) having parameters of type

IT (C) { that is, we'll be using recursive types in an essential way.

We introduce the keyword Self to represent the type of self inside a class def-

inition. Then we de�ne the \representation type" induced by a class de�nition

C to be

RT (C) = prod(: : : ; fi : var �i; : : : ;

: : : ; mj : fun(self : Self; xj : �
0

j)�
00

j ; : : :)

This is just the natural record type obtained by replacing each method by its

corresponding premethod and using Self for the type of self. Now a sensible

interpretation for the instance type of C is obtained by introducing recursion

on Self:

IT (C) � � Self:RT (C)

A translation T [[�]] can be de�ned as usual by induction on expressions in the

language extended with classes. There are only a few interesting cases: ob-

ject construction, �eld selection and method invocation. The rule for object

construction is:

T [[newobj(C)]] = abs(h

: : : ; fi � newvar(�i); : : :

: : : ;mj � lambda(self : Self; xj : �
0

j):(T [[ej]]); : : : i)

An object construction is translated to a record construction in which meth-

ods are replaced by the corresponding premethods; the record construction is

wrapped in an \abs" constructor. This leads to the typing

� ` T [[newobj(C)]] : � Self:RT (C) = IT (C)

Field selection simply requires that the recursive type be unwound properly.

Thus, if e is an object expression of class C,

T [[e:fi]] = (rep(e)):fi

4

which leads to the typing

� ` T [[e:fi]] : [(� Self:RT (C))=Self](RT (C))

= [IT (()C)=Self](RT (C))

Finally, the translation of method invocation must explicitly pass the self pa-

rameter as well as unwinding the recursive type:

T [[e:mj(e
0)]] = let z � e in (rep(z)):mj(z; T [[e

0]])

This leads to the typing

� ` T [[e:mj(e
0)]] : [(� Self:RT (C))=Self](� 00

j)

= [IT (C)=Self](� 00

j)

This is just the method result type with the recursion unwound once.

Example: Recursive types in IMPX are a bit counterintuitive, so here is a

short example using the above rules. We use the fairly meaningless class de�ni-

tion

class C f

get : method()intf 0 g;

copy : method()Selff self g

g in : : :

The representation type is

RT (C) = prod(

get : fun(self : Self)int;

copy : fun(self : Self)Self)

and the corresponding instance type is

IT (C) = �Self : RT (C)

= �Self : (prod(

get : fun(self : Self)int;

copy : fun(self : Self)Self))

Now consider the method invocation

(newobj(C)):get()

5

The invocation translates as

T [[(newobj(C)):get()]] =

let z � newobj(C) in (rep(z)):get(z))

Here z has type IT (C), which is an abstract recursive type. By the rules for

recursive types,

rep(z) : [IT (C)=Self](RT (C))

and the selected method get has type

(rep(z)):get : [IT (C)=Self](fun(self : Self)int)

= fun(self : IT (C))int

Now the type of the argument z matches the parameter type in the invocation

: : : z:get(z)

and the method invocation is properly typed with result int as expected.

A similar argument shows that in the same context a selected copy method

would have type

(rep(z)):copy : [IT (C)=Self](fun(self : Self)Self)

= fun(self : IT (C))IT (C)

Thus the result type of an invocation of copy is IT (C) as it should be.

3 Method Dictionaries

In the representation described above, we conceptually store a copy of every

method in every object instance. This representation allowsmaximumexibility

{ in principle, it would be possible to replace individual methods at a per-

object granularity. On the other hand, if premethods are used, then clearly

the premethod values are identical in every object instance of a given class; so

arguably this representation is rather wasteful of space.

It is quite possible to share the premethods { that is, store only a single copy

of the premethods of a class, and have all object instances of the class refer

to these methods indirectly. One way to do this, used in some Java systems,

replaces the representation type RT (C) by three types: a �eld type FT (C),

6

a method dictionary type DT (C), and a handle type, HT (C). The �eld and

dictionary types hold, respectively, the �elds and the methods of an instance.

A handle is the \glue" that holds the �elds and methods together: it is a pair of

references to the �elds and methods. It is simple to arrange that all instances

of any particular class can share the same copy of the method dictionary.

Doing this in detail would be somewhat tricky in IMPX, however, because the

three types FT (C), DT (C) and HT (C) must be mutually recursive, and this is

not well supported in IMPX.

4 Subclasses

If OO programmingwere restricted to the features we have presented thus far, it

might be an amusing programming style, but it would arguably contain nothing

of much interest or importance. The power of OO programming begins to

appear when we allow subclassing. To illustrate, here is an extension of the

\cell" example from above:

subclass reCell of cell f

b : var int;

set : override(x : int)intf self:v self:x; self:v x g

qquad restore : method()intf self:v self:b g;

g in : : :

Because reCell is declared to be a subclass of cell, it inherits all the �elds and

methods of cell. It may add new �elds (like \b"), add new methods (like \re-

store"), or override methods (like \set") by providing a new method de�nition.

Intuitively, what this program does should be pretty clear to all you Java pro-

grammers out there. It de�nes a class named \reCell" (for \restorable cell")

that is a subclass of cell in the sense that an object of the reCell class behaves

like an object of the cell class, provided the client restricts itself to �elds and

methods de�ned in the cell class. Clients that know about the reCell class can

invoke the \restore" method of a reCell object to undo the e�ect of the most

recent set operation.

The ability to make incremental modi�cations, to add new behaviors without

breaking existing code, and to maximize code reuse through inheritance, is the

major strength of OO programming. Any attempt to model it formally must

provide a satisfactory account of subclassing and inheritance. It's harder than

it looks . . .

7

The notion of \usable in place of" is the same one we used earlier to motivate

the subtyping relation in IMPX. It suggests that the subclass relationship and

the subtype relationship should correspond; that is

C � C
0 , IT (C) � IT (C0)

This property, often called \subclassing is subtyping" for obvious reasons, is

characteristic of many OO languages, especially older designs.

Observe that our instance types are (and for the remainder of these notes will

continue to be) entirely structural. In particular, nowhere in IT (C) does the

class name of C actually appear. Instead, we get the generic identi�er Self.

Thus, it is perfectly possible for two classes, unrelated by the subclass relation,

to generate identical instance types. Consequently, the implication above fails

in one direction for our system; we have a \subclassing implies subtyping"

At �rst glance it would seem that subclassing is essentially the same as subtyping

of the record types generated by our premethod-based translation above. Both

techniques add new �elds or methods to move from a superclass (or supertype)

to a subclass (or subtype). Unfortunately, the use of Self in a contravariant

position (that is, in the parameter position of the types of premethods) makes

the typing fail in the presence of subtypes, as we'll see below.

4.1 Premethod Typings Fail

We consider the types of the set premethods In the simple cell! reCell example.

We'll be slightly informal, and use the names \IT (cell)" and \IT (reCell)"

directly rather than using recursive types. Then the type of the get premethod

of a cell object should be

fun(self : IT (cell)) int

while the type of the get premethod of a reCell object should be

fun(self : IT (reCell)) int

Similarly, the type of the set premethod of a cell object should be

fun(self : IT (cell); x : int) int

while the type of the set premethod of a reCell object should be

fun(self : IT (reCell); x : int) int

In both cases, these di�er by the type of the self parameter in the obvious way.

There are several ways in which methods of two classes can be \mixed:"

8

Inheritance: When we construct an object value of class reCell, it inherits

the value of get from the value de�ned for the superclass cell. As we saw above,

the types of the premethods cell.get and reCell.get are not the same. But, with

the assumption that IT (reCell) � IT (cell), all is well. Since the uses of IT (�)

occur in the (contravariant) parameter position in the premethod types, we get

IT (reCell) � IT (cell) ,

fun(IT (reCell))int � fun(IT (cell))int

and the inheritance is legal under the typing rules.

Overriding: Consider binding an object of class reCell (say \someRefCell")

to a variable of class cell (say \someCell"), for example by parameter passing.

The premethod typeing rules can allow this only if the type of someRefCell.set

is a subtype of someCell.set. Unfortunately, what we can prove is:

IT (reCell) � IT (cell) ,

fun(IT (reCell); int)int � fun(IT (cell); int)int

which is exactly the reverse of what we need.

Thus, using standard functional typing rules on premethods is too restrictive to

allow method overriding, and thus is not satisfactory for describing an object

system.

This raises an interesting question: are the rules simply too restrictive to ex-

press method overriding, or is method overriding itself unsound in certain cir-

cumstances? The answer is \both." We'll argue that the contravariant use of

Self as the implicit parameter of a premethod could be allowed, indeed must

be allowed to enable any method overloading at all. On the other hand, the use

of Self in any other contravariant position is inherently unsound.

4.2 Eliminating Implicit self Parameters

Intuitively, the implicit self parameter of a premethod does not lead to unsound

typings because premethods can be used only in restricted ways. In particular,

it is not possible to pass an arbitrary object as the self parameter, or even an

arbitrary object of the Self type. The only object that be passed to the self

parameter of a premethod is the identical object from which the premethod was

selected.

This intuition suggests that we can get a sound type system if we can guarantee,

�rst, that a premethod is always consistent with the particular object of which it

9

is a part, and second, that a premethod can never be selected from its containing

object without binding at least the self parameter.

For IMPX this goal is not too diÆcult to achieve. We exploit a trick we've seen

before of using an assignable prod variable to achieve the e�ect of simultaneous

recursive de�nitions. Speci�cally, we modify RT (�), IT (�) and T [[�]].

The change to RT (C) is simple:

RT (C) = prod(: : : ; fi : var �i; : : : ;

: : : ; mj : fun(xj : �
0

j)�
00

j ; : : :)

This is just our previous de�nition forRT (C) with the self parameter eliminated

from each premethod type (i.e., with each premethod type changed back to a

method type).

As before, the instance type of C is obtained by recursion on Self:

IT (C) � � Self:RT (C)

Note we could now obtain a useful language even without this recursive de�ni-

tion, since the essential use of Self { the self parameter of each premethod {

has been eliminated.

The important changes to the de�nition of T [[�]] are in the cases for object

construction and method application.

The rule for method application is the simplest { we no longer need to pass an

explicit self parameter, so in e�ect the rule goes away:

T [[e:mj(e
0)]] = (rep(T [[e]])):mj(T [[e

0]])

This leads to the typing

� ` T [[e:mj(e
0)]] : [(� Self:RT (C))=Self](� 00

j)

= [IT (C)=Self](� 00

j)

Note the result type of the application is the same in the original (premethod

based) rules and the new ones; the di�erence is just the absence of the implicit

self parameter in the new rules.

The rule for object construction changes signi�cantly.

T [[newobj(C)]] = let z � newvar(IT (C)) in

z abs(h

: : : ; fi � newvar(�i); : : :

: : : ;mj � lambda(xj : �
0

j):(T [[([z " =self](ej))]]); : : : i)

10

Instead of using premethods with self parameters, this translation explicitly

binds self to the newly constructed object using assignment to a variable in the

store. The typing remains

� ` T [[newobj(C)]] : � Self:RT (C) = IT (C)

with the new interpretation of RT (�).

Note the run time organization suggested by this discussion. Each object is

represented by a tuple including separate copies of each method of its class.

Each method is specialized (by a free variable binding) to the particular ob-

ject that contains it. This organization wastes space, and is not well suited to

shared method dictionaries as discussed above. It is not proposed as a real im-

plementation. It is more in the nature of a proof. You should convince yourself

that the typings produced for this embedding are identical to those that would

be produced by straightforward rules that dealt entirely with method types in-

stead of premethod types. This fact, combined with semantic correctness of the

embedding (which is, I hope, pretty clear) and soundness of the IMPX type

rules (which we have discussed at some length) shows that a set of typing rules

that ignores the self parameter of premethods altogether is sound. Thus, the

contravariant use of Self in the self parameter of a premethod is not of concern.

4.3 Other Contravariant Uses of Self

Contravariant uses of the Self type other than in the �rst (self parameter)

position cannot be \hidden" inside the translation of the object constructor.

We argue that they cannot be handled by this style of typing rule. Consider

the following simple class de�nition:

class maxClass f

a : var int;

max : method(y : Self)Selff

if self:a > y:a then self else y g

g

An object of class \maxClass" has a value �eld a and a method max. The max

method takes, in addition to self, an parameter y of the Self type. It returns

whichever of these two objects (self or y) has the greater value in its a �eld.

Next consider the subclass minMaxClass de�ned by adding a min method to

maxClass:

subclass minMaxClass of maxClass f

min : method(y : Self)Selff

if self:a < y:a then self else y g

11

This seems like a perfectly natural extension to maxClass, and so far nothing

catastrophic has happened.

However, let's consider extending maxClass by overriding as well as adding a

method:

subclass minMaxClass2 of minMaxClass f

max : override(y : Self)Selff y:min(self)g

Here the maxmethod is rede�ned in terms of themin method with the operands

reversed.

A \sublassing is subtyping" or \subclassing implies subtyping" rule in this case

is unsound. Consider

let a : IT (maxClass) � newobj(minMaxClass2) in

let b : IT (()maxClass) sim newobj(maxClass) in

a:max(b)

If the typing rules imply

IT (minMaxClass2) � IT (minMaxClass) � IT (maxClass)

then the binding of a to a minMaxClass2 value must be allowed. The appli-

cation a:max(b) will use the overridden de�nition of max. This will attempt to

invoke the min method of argument b, which is a maxClass object and thus has

no min method to invoke.

5 Summary

There's a great deal we haven't touched here. In particular, we haven't discussed

multiple inheritance at all, and we certainly haven't said enough about recursive

object types. But we have come to a reasonable position to stop: we have

a sound single-inheritance \subclassing implies subtyping" system, with Self

types allowed in any covariant position. This is (nearly) enough to write real

programs.

I only wish we'd had time to cover Interfaces ...

12

