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In these Notes we give a simple runtime representation for IMPX-like languages.

This representation is not \eÆcient" { an optmimizing compiler person would

�nd it beneath contempt { but it is orders of magnitude better than a direct

implementation of our structural semantic evaluation rules.

We then give most of the details of a simple \compiler," that is, a function K

that maps IMPX terms to programs that, when executed, produce the values

of those terms using the runtime representation we have described.

1 The Implementation Language

The target language for our implementation is intended to be suÆciently low-

level that there is an \obvious" translation to machine language, but suÆciently

abstract that our programs are not intolerably long. The language is very nearly

a subset of C. Here is an informal description.

Datatypes: Expressions are either integer valued or pointer valued. (Integers

and pointers are datatypes that should �t in a single word of memory or a single

machine register.)

A primitive form of record { essentially just a contiguous sequence of memory

locations { is supported in the \heap", described below.

Dynamic Storage Management: Storage management is the one \high-

level" feature supported in our target language. We provide a \heap" in which

we can allocate records of arbitrary size. (The sizes of all heap-allocated objects

are known at compile time, though this is not especially signi�cant).

An expression
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p  new(n)

allocates a record of n contiguous memory locations and returns the address of

the �rst one in p.

The language includes a pre�x dereference operator, \*", and arithmetic on

pointer values. Thus,

*p

denotes the memory word whose address is p; and

*p, *(p+1), . . . , *(p+n-1)

are the n words of the record allocated by the invocation of textrmnew in

the example above. Subscripted expressions are treated as abbreviations for

dereferencing:

p[e] � *(p+e)

This is the form we will use most frequently below.

We've said dereferencing manipulates a single word, without specifying whether

that word contains an integer or an address. For our purposes this doesn't

matter { memory addresses are in fact represented as integers, and in any case

it will be clear from context which meaning is intended.

We assume that any record allocated in the heap is retained as long as it might

be needed. This can be achieved by garbage collection: reclaiming the storage

occupied by a record only after the record is no longer reachable by any sequence

of dereference operations applied to program variables. A technique called con-

servative garbage collection deals properly with the ambiguity between integers

and pointers discussed in the preceding paragraph.

Control Structure: The language includes simple conditionals and loops:

if (hexpressioni) f hstatementsi g else f hstatementsi g

while ( hexpressioni ) f hstatementsi g

There is no function/procedure call mechanism. However, the language supports

a computed goto statement of the form
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p  L

goto p

. . .

L:

hmore program statementsi

That is, a program label (L in the above example) may be used as a pointer-

valued expression; and a goto statement can use a pointer value (p in the above

example) to contain the address of its target.

2 Runtime

The compiler generates code that, when executed, manipulates a runtime state

so as to compute correct result values. Here we discuss the overall structure of

the runtime and how typed IMPX values are represented in it.

2.1 Overview

We have previously given evaluation rules for IMPX. These rules manipulate

con�gurations of the form

he; �; �i

A computation (that is, a derivation according to the evaluation rules) is roughly

a tree labeled by such con�gurations. Program execution corresponds to a

traversal of that tree. The runtime state corresponds to a state of such a traver-

sal. Speci�cally, the program counter in the executing code determines e, a

(sub) expression being evaluated. We maintain an expression evaluation stack,

a singly-linked list headed by a global variable sp, which holds values produced

for subgoals (i.e. subtrees of the derivation) that have been evaluated (i.e. tra-

versed) but whose result values have not yet been used. We maintain an environ-

ment stack, a singly-linked list headed by a global variable ep, which represents

the current environment �. Finally, the store � is represented implicitly by a

collection of heap records reachable from the expression and environment stacks.

2.2 Representing Values

The types in a well typed IMPX program yield useful compile time information

about the representations of values. Most IMPX values cannot be represented in
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a single machine word, so a value of type � will be represented as a heap record.

The record may be linked directly into the evaluation stack or environment

stack; or it may be reachable from one of them by dereferencing operations. It

is a property of our type system that all values of a given type � require the same

number of machine words to represent them. The length of the representation

of � can easily be de�ned by induction on the structure of � , as follows.

Simple types: These are represented in a single machine word.

typelen[[int]] = 1

typelen[[bool]] = 1

Product types: The �elds of a product value are laid out consecutively in

memory; so

typelen[[prod(: : : ; xi : �i; : : :)]] =
P

i typelen[[�i]]

In addition, we will need the o�set of each �eld from the beginning of the value:

o�set[[prod(: : : ; xi : �i; : : :):xj]] =
Pj�1

i=1 typelen[[�i]]

Thus, if p points to (contains the address of) a value of product type � , then

p+o�set[[�:x]]

points to its x component.

Sum types: A sum type is represented by a tag, which we assume �ts in a

single word, and a value of one of the element types. Thus,

typelen[[sum(: : : ; xi : �i; : : :)]] = 1 +maxi typelen[[�i]]

Thus, if p points to a value of sum type � , then p points to its tag �eld, and

(p+1) points to its current value.
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Function types: Recall in one of our previous operational de�nitions for

IMPX we represented a function value in the environment as a pair

he; �i

where e was the unevaluated function body and � was the environment in which

that function body should be evaluated. Pairing a function body with an envi-

ronment was one way to implement static scope rules, and we shall use it here.

The above function value will be represented by a pair

hip; epi

of words in memory, where ip is the address of the compiled code for e, and ep

is the head pointer of an environment stack representing �.

2.3 Stacks

Our runtime includes several stacks, implemented as follows. A stack is rep-

resented by a singly linked list of frames. (This is a slight abuse of standard

terminology, but only slight). A frame is a record consisting of a link �eld (at

o�set 0) followed by a value �eld (at o�set 1) whose length is determined by the

typelen of the IMPX value being stored. To allocate a frame that will contain

a value of length n, we invoke

newframe(n) � new(n+ 1)

That is, newframe allocates a record big enough to contain the value and link

�eld. If we de�ne

LINK � 0 and VAL � 1

and let p point to a frame containing a value of some prod type � , then for

example

p[LINK]

is the (one word) link �eld of the stack frame, and

p+VAL+o�set[[�:x]]
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is the address of the x �eld of the stored value.

We introduce a couple of stack manipulation primitives.

PUSH(p, s) � f p[LINK]  s; s  p g

is a macro that pushes the frame pointed to by p onto the stack whose head

pointer is s.

POP(s) � f temp  s; s  s[LINK]; return(temp) g

is a macro that pops a frame from the stack s and returns the newly popped

frame. In most, but not all, cases the popped frame is immediately discarded.

Finally, (because it's not clear where else this belongs) we have a primitive

copy(pto, pfrom, n)

which copies n contiguous words from location pfrom to location pto.

2.4 Stores

There is little to say about the store. Abstractly, the store is a collection of

typed locations with addresses. This is implemented below by allocating heap

records of the appropriate size, and storing pointers to them in the environment

and expression stack.

3 The Compiler

The compiler is a function de�ned on expressions and ordered type environments

(described below). Inductively, the result of

K[[e]]�

should be some code in the target language. The e�ect of executing this code,

given an initial value of ep that is \consistent" with �, should be to push the

value of e on the expression stack sp, correctly updating the values in the store,

with no net e�ect on the environment stack ep.
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3.1 Ordered Type Assignments

In addition to an expression e, the compiler function takes an argument � that

acts as a type assignment { that is, it contains a typing (x : � ) for each stati-

cally accessible identi�er x. However, the type assignments used in our typing

rules were unordered sets. For the compiler, type assignments are explicitly

sequential. An ordered type assignment behaves like a stack with the top at

the right. Lookup proceeds by \walking" the stack from top down until the

desired identi�er is encountered. Let ; denote the empty assignment, and � be

the operation of \pushing" a new assignment. We can de�ne lookup naturally

by induction on the ordered assignment:

;(x) = error

(� � (x : � ))(x) = (x : � )

(� � (y : � ))(x) = �(x)

To generate code for identi�er reference, we shall require the depth of x in �,

which is de�ned similarly:

depth(;; x) = error

depth((� � (x : � )); x) = 0

depth((� � (y : � )); x) = 1+depth(�; x)

Once we have presented the compiler de�nition, you should convince yourself

of the following correspondence between the ordered environment stack � and

the runtime environment stack ep. Each represents bindings to a sequence of

identi�ers { � is a compile time binding of types to a sequence of identi�ers, and

the environment stack is a run time binding of values to a sequence of identi�ers.

At all points in the generated code the sequences of identi�ers represented by �

and ep are identical. Thus, � can be thought of as a compile time environment.

3.2 De�nition of K

At last we are in a position to de�ne the compilation function. The generated

code is a big program in the target language. It does no procedure calls other

than the memory and stack management primitives discussed above. It uses only

four temporary variables { p, q, r and b. The temporary variables satisfy an

important property: no temporary variable is ever live across the code generated

by a recursive invocation of K. This guarantees that temporary variable uses

in separate clauses of the inductive de�nition of K will never \step on" one

another.

So here is (most of) the de�nition of K:
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Constants:

K[[n]]� =

p  newframe(typelen[[int]]);

p[VAL]  n;

PUSH(p, sp);

The generated code simply pushes a new stack frame containing the value n.

Sequential Composition:

K[[e1; e2]]� =

K[[e1]]�

POP(sp);

K[[e2]]�

The generated code pushes the value of e1, then pops it, then pushes the result

value of e2.

Binary Operators:

K[[e1 + e2]]� =

K[[e1]]�

K[[e2]]�

p  newframe(typelen[[int]]);

p[VAL]  sp[VAL] + sp[LINK][VAL];

POP(sp); POP(sp); PUSH(p, sp);

The code evaluates and stacks e1 and e2. It then constructs a new integer stack

frame, stores the sum result there, pops the (now useless) frames for e1 and e2,

and pushes the new result frame.

Identi�ers:

K[[x]]� =

q  ep;

q  q[LINK]; . . . (d times) . . . q  q[LINK];

p  newframe(len);

copy(p+VAL, q+VAL, len);

PUSH(p, sp);
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where

d = depth(�; x)

and the length value \len" is determined by

� = �(x) and len = typelen[[� ]]

which is known at compile time.

Observe that the depth of x in � at compile time is equal to the number of

environment stack frames the code must traverse at run time.

Variable Allocation:

K[[newvar(e)]]� =

K[[e]]�

q  new(len); copy(q, sp+VAL, len);

p  newframe(1); p[VAL]  q;

POP(sp); PUSH(p, sp);

where as above the length value \len" is determined by

� ` e : � and len = typelen[[� ]]

which is known at compile time. Here the record allocated for q (the address

of which is returned as the value of the newvar expression) is conceptually

part of the store; it is not a stack frame, and does not have a LINK �eld. The

arguments of the initializing copy invocation reect this fact: the source address

argument is \p+VAL", representing the value �eld of the stack frame; while the

destination address argument is simply \q".

Variable Reference:

K[[e "]]� =

K[[e]]�

p  newframe(1); copy(p+VAL, sp[VAL], len);

POP(sp); PUSH(p, sp);

where the length value \len" is determined by
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� ` e : var � and len = typelen[[� ]]

which as usual is known at compile time.

Again, look carefully at the two parameters to copy. The �rst (destination)

parameter \p+VAL" is the address of the value portion of the stack frame

pointed to by p. The second (source) parameter \sp[VAL]" is the contents of

the value portion of the stack frame pointed to by sp (that is, the frame at the

top of the expression stack). This is the address of a record in the store, as

would have been allocated and returned by the code for a newvar expression.

Assignment: is an easy exercise.

Record Constructors: (Arrgh!)

K[[hx1 � e1; : : :xn � eni]]� =

K[[e1]]�; . . . ; K[[en]]�

p  newframe(len);

copy(p+VAL+o�n, sp+VAL, lenn); POP(sp);

. . .

copy(p+VAL+o�1, sp+VAL, len1); POP(sp);

PUSH(p, sp);

where the length and o�set values are determined from the �elds in the obvious

way:

� ` ei : �i

� = prod(: : : ; xi : �i; : : :)

leni = typelen[[�i]]

o�i = o�set[[�; xi]]

which are all known at compile time.

Note this code computes the values of the �elds in the correct left-to-right order,

ensuring that side-e�ects happen in the correct order, though it then copies the

�eld values into the result record in reverse order.

Field Selection:

K[[e:x]]� =

K[[e]]�

p  newframe(len); copy(p+VAL, sp[VAL+o�], len);

POP(sp); PUSH(p, sp);
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The values \len" and \o�" are determined by

� ` e : � 0 � 0 � prod(ldots x : �; : : :)

len = typelen[[� ]] o� = o�set[[�:x]]

both of which are known at compile time. Arguably this is very ineÆcient { an

entire record value is pushed onto the stack in order to select any �eld. However,

the semantics requires that, even if it is not pushed on the stack, every �eld must

at least be computed if that computation might have side e�ects.

Sum Types: These are left as exercises.

Conditionals:

K[[if e1 then e2 else e3]]� =

K[[e1]]�

b  sp[VAL]; POP(sp);

if (b == TRUE) f

K[[e2]]�

g else f

K[[e2]]�

g

This assumes e1 is a Boolean expression in IMPX (which it must be if the

program is well typed), so its evaluation will have the e�ect of pushing either

TRUE or FALSE on the expression stack. Note that \if(b == TRUE)" and

\else" are part of the generated code, as are both of K[[e2]]� and K[[e3]]�. The

test is performed at run time (as it must be), not at compile time.

Loops: These are similar to conditionals, and are left as another exercise.

Nonrecursive Let Binding:

K[[let x � e1 in e2]]� =

K[[e1]]�

PUSH(POP(sp), ep);

K[[e2]](� � (x : �1))

POP(ep);

The type �1 is determined by
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� ` e1 : �1

That is, it is the type of the bound expression and hence of the bound variable

x. This code has no net e�ect on the environment stack; but it does push the

value of e1 on the environment stack temporarily, while evaluating e2.

Note the use of \PUSH(POP(sp),ep)" to transfer a frame from the expression

stack to the environment. This is one of the few places where the result of POP

is not immediately discarded.

Functions: These are by far the most complex case. The trick is to have a

clear understanding of the calling conventions, essentially the contract or di-

vision of labor between the caller and callee. Our convention will be for the

function body to be entered with its environment already set up, including the

step of pushing the argument onto the new environment. The top of the ex-

pression stack will contain an (ip,ep) pair representing the invoker's resumption

point { a sort of generalized return address. When the callee returns, it will

have pushed its result value onto the expression stack, \covering" the resume

(ip,ep) frame. It will be the caller's responsibility to remove this frame.

With this introduction, the case for a function invocation looks like:

K[[e1(e2)]]� =

K[[e1]]�

K[[e2]]�

q  POP(sp); p  POP(sp);

r  newframe(2);

r[VAL+EP]  ep; r[VAL+IP]  L;

ep  p[VAL+EP]; PUSH(q, ep);

PUSH(r, sp);

goto q[VAL+IP];

L:

ep  sp[LINK][VAL+EP];

p  POP(sp); POP(sp); PUSH(p, sp);

How does the generated code work? It �rst evaluates the function and argument.

It puts them into temporaries p and q, and pops them from the expression stack.

At this point, p points to a \oating" stack frame containing the (ip,ep) pair

for the callee; and q points to a frame holding the argument value for the call.

The generated code then constructs the resume (ip,ep) pair { the \generalized

return address" mentioned above { and pushes it on the expression stack. It

then sets the environment to the \ep" component of the function to be invoked,

updates it with the argument q, and jumps to the ip component of the callee.
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When the callee returns (to location L) the caller's \epilog" code restores the

environment and removes the resume (ip,ep) pair from the expression stack.

Note a minor bug in this presentation: we assume every instance of a generated

label L is unique { that is, multiple recursive invocations of K on function

applications cannot all be allowed to generate the same label L. Thus, to be

truly accurate we need a \gensym()" function that generates and returns a

unique new label every time it is invoked. This is not conceptually diÆcult, but

it is slightly messy, so I'll just rely on your good will and intuition here.

The code for a function valued expression is, if not conceptually simpler, at least

somewhat shorter.

K[[lambda x : � dot e]]� =

p  newframe(2);

p[VAL+IP]  L1; p[VAL+EP]  ep;

PUSH(p, sp);

goto L2;

L1:

K[[e]](�� (x : � ))

goto sp[LINK][VAL+IP];

L2:

As above, L1 and L2 are globally unique labels. The code to evaluate a �

expression returns a function value on the stack { just an (ip,ep) pair. The code

for the function body is generated in-line beginning at label L1, with a branch

around it. Thus, the ip component of the expression result is L1, and its ep

component is just the current environment.

The function body code is fairly straightforward. According to our calling con-

ventions, it expects to be entered with its argument already pushed onto the

environment stack, and with a return (ip,ep) pair at the top of the expression

stack. It simply pushes the result value onto the expression stack (the net e�ect

of K[[e]](�� (x : � )) and then returns to the \ip" of the return pair, which is

now \buried" under the result value on the expression stack. As noted above, it

is the caller's responsibility to remove the return pair from the expression stack.
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