
CS411 Notes 8 – Types I

A. Demers

21 Feb 2001

1 Fundamentals

1.1 A Tiny Language Fragment

When we first introduced abstraction, we used syntactic sets for typechecking.
In particular, the distinction between program variable names and function
names was enforced by using separate syntactic sets Loc and Fname, which
were treated separately by the formation rules.

We are about to start doing much more sophisticated typechecking, for which
we’ll use proof rules analogous to our evaluation rules. This will eliminate the
need for separate syntactic sets to enforce type-related rules. Thus, we will
replace Loc and Fname by a single infinite syntactic set Id of identifiers

x ∈ Id

and all the names declared in a program will be taken from this set.

We shall also introduce a set Type of type expressions. Initially we define

τ ∈ Type Type = {int,bool, string}

but this set will get much richer.

We introduce syntactic sets providing constants for each of our three initial base
types:

n ∈ N N = {0,±1,±2, . . .}

t ∈ B B = {true, false}

s ∈ S S = character strings

With these definitions, our initial simple language fragment becomes

1

e ::= n | t | s | . . . | e0θe1 | e0; e1

| if e0 then e1 else e2 | . . .

Note this fragment does not (yet) contain let blocks or assignment.

1.2 Type Rules

We can now give proof rules that define the well-typed programs. A judgement
in the system (the conclusion of one of the rules) takes the form of a type
annotation, that is

e : τ

and should be interpreted to mean e is a valid syntactic object of type τ .

The proof rules for the initial language fragment are completely straightforward.
For the constants of each type we have the axioms:

n : int t : Bool s : string

The types of compound expressions are built up from the types of their subex-
pressions:

e0 : int e1 : int
(e0 + e1) : int

There are similar rules for other arithmetic operators, and for Boolean and
string operations. Some operators combine a fixed set of types, for example the
rule

e0 : string
len e0 : int

describes a string length operator that returns a number. Other operators
and syntactic constructs are “overloaded” or “generic” (we will discuss these
concepts in some detail later on) resulting in rules with metavariables ranging
over Type, for example

e0 : τ e1 : τ
(e0 = e1) : bool

e0 : bool e1 : τ e2 : τ
(if e0 then e1 else e2) : τ

2

e0 : τ0 e1 : τ
(e0; e1) : τ

Instantiating such a rule involves choosing an arbitrary element τ ∈ Type. Note
in particular for the sequential composition rule, the type τ0 chosen for e0 does
not occur in the conclusion of the rule; but it is necessary that some τ0 exist to
show that e0 is a well-formed expression.

Together these rules satisfy the property

Unique Typing: For any expression e there is at most one type τ for which
the type attribution e : τ is derivable. Moreover, there is at most one derivation
of e : τ .

1.3 Evaluation

For the tiny language fragment, which does not include assignable program
variables or let blocks, the evaluation relation is rather trivial. We need neither
an environment nor a store. Judgements take the form

e→ v

where v is a “value,” which for the tiny language is just exactly an irreducible
expression, an element of N ∪B ∪ S.

There are rules for applying operators and essentially nothing else. For example

e0 : bool→ true e1 : τ → v

(if e0 then e1 else e2) : τ → v

is one of the most complicated rules; we leave the others as an exercise.

An important point to note: the valid programs are just the well-typed ones.
Thus, in the rule above we include type annotations for all expressions that
appear. Technically we can assume an evaluation rule is instantiated with a
derivation of the type annotation for each expression and subexpression that
appears in it. In the example above, the subexpressions e1 and e2 could be typed
ei : τ . By the unique typing property introduced above this is well-defined; that
is, for any expression or subexpression there can be at most one derivation of a
typing.

All evaluations terminate deterministically, as is easily shown by WF induction.

3

2 Adding Abstractions

Next we extend the language by adding abstractions.

Then we add two new formation rules, one for abstraction definition and another
for invocation:

e ::= . . . | let . . . xi ∼ ei . . . in e | x

2.1 Type Rules

Now what should the form of a judgement be? We can get some intuition by
considering the proof rule for let. The rule will need a hypothesis that says
something like “if x has the type of e0 then e1 has type τ .” We don’t yet have
enough mechanism to express the “if x has the type . . .” part. So we need to
develop it.

Define a type assignment π to be a finite set of type annotations

π = {. . . , xi : τi, . . .}

We actually require π to be a finite partial function; that is,

((x : τ0 ∈ π) ∧ (x : τ1 ∈ π)) ⇒ (τ0 ≡ τ1)

To manipulate type assignments as functions, we give a few auxiliary definitions:
The domain of π when viewed as a partial function:

dom(π) = {x|∃τ x : τ ∈ π}

The restriction of π to a subset of the identifiers:

π|S = {x : τ ∈ π | x ∈ S} whereS ⊂ Id

The update of π by π′:

π ⊕ π′ = (π|Id−dom(π′)) ∪ π′

In the last definition, bindings from dom(π′) are deleted from π before the
union is taken.

4

Judgements will take the form

π ` e : τ

which you should interpret to mean that if the free variables in e have the types
specified in π, then e will have type τ .

It will turn out that such a judgement will be derivable only if every free variable
in e has a typing in π. This will be provable by induction on derivations.
Intuitively, such a judgement makes sense only for well-formed environments.
For example, if x : τ ∈ π then τ should be a well-formed type expression. In
our current language fragment this condition is trivial, as there are only three
types; but later it will become more interesting.

The rules for the language fragment without let blocks can be adapted to this
new language extension by inserting a common type assignment everywhere:

π ` n : int π ` t : bool π ` s : string

π ` e0 : int π ` e1 : int
π ` (e0 + e1) : int

π ` e0 : string
π ` len e0 : int

π ` e0 : τ π ` e1 : τ
π ` (e0 = e1) : Bool

π ` e0 : bool π ` e1 : τ π ` e2 : τ
π ` (if e0 then e1 else e2) : τ

The interesting rules are those for for abstraction and invocation:

Let binding

. . . π ` ei : τi π′ ` e : τ
π ` (let . . . xi ∼ ei . . . in e) : τ

where π′ = π ⊕ {. . . xi : τi . . .}

The let block has type τ using a given type assignment π if π can be used to
derive typings ei : τi for the abstracted expressions, and then π augmented by
the derived typings can be used to derive the typing e : τ for the block body.

5

Identifier reference

π ` x : τ
if x : τ ∈ π

The type of an identifier reference is taken from the type assignment.

A unique typing theorem is a bit more subtle in the presence of type assignments.
The type of an expression cannot be unconditionally unique, since it clearly can
depend on the type assignment used to derive it. We present unique typing in
two parts:

Support: Let π and π′ be type assignments where

π′|FV (e) = π|FV (e)

Then

(π ` e : τ) =⇒ (π′ ` e : τ)

That is, the derivation of a type annotation e : τ using π depends only on the
types assigned to free variables of e by π.

Unique Typing: For any π and e, there is at most one derivation of π ` e : τ .

A result that is conditional on π is arguably the best we can do. For example,
the expression

if x then y else z

may be invalid (if x : bool 6∈ π) or may have any type τ (if y : τ ∈ π and
z : τ ∈ π). The presence or absence of w : τ in π has no effect on the type,
since w does not occur free in the expression.

2.2 Evaluation

This section is not yet written · · ·.

6

