
CS411 Notes 7 – Lexical Scope

A. Demers

13 Feb 2001

In a sense our definition of the copy rule as a function leads directly to a se-
mantics for programs with expression abstractions. Suppose e is an expression
with no free variables. Then to show

〈e, φ0, σ〉 → 〈n, σ′〉

where e is an expression in IMPX-1, it is sufficient to show

〈C(e), σ〉 → 〈n, σ′〉

using the IMPX rules. This makes sense because C maps closed IMPX-1 expres-
sions (those containing no references to unbound function names) into equivalent
IMPX expressions, for which the old rules were sufficient.

The technique of defining a language extension by conversion rules that translate
extended programs to equivalent programs in the core language is not uncom-
mon, and we shall see it again.

However, we can give large step rules for lazy static scope by changing the
structure of the environment a bit.

1 Lazy Rules for Lexical Scope

Our two previous sets of rules for IMPX have used environments of the form

Φ = Fname→ Fval

where Fval was chosen to be numbers (for the eager rules) or expressions (for the
lazy rules). Using simple expressions for Fval led to a dynamic scope semantics,

1

in which an invocation evaluated in the invoking environment rather than the
defining environment. We have argued that the alternative of lexical scope –
evaluating an invocation in the defining environment rather than the invoking
environment – would be a better choice.

Suppose we try to define lexical scope explicitly, by storing in the environment
not just an expression to evaluate, but also the environment in which it should
be evaluated. We would like our environments to satisfy

Fval = (Exp× Φ) (FV-lazylex)

or, equivalently

Φ = Fname→ (Exp× Φ) (Env-lazylex)

This “definition” has serious foundational problems, allowing environments that
properly contain themselves. Fortunately, we can fix things without too much
effort. We don’t need arbitrary environments; instead, we can get by with
a recursively defined set of environments that are “ranked” by their nesting
depth. We treat them as if they were functions by explicitly defining a “map”
or “apply” operation suggestively called map. At the lowest rank we have an
identifiable “empty” environment:

Φ0 = {φ0}

Higher ranks are defined by

Φi+1 = Φi ∪ (Fname→ (Exp× Φi))

with an application function defined by

map(φ, f) =
{
〈0, φ0〉
φ(f)

φ = φ0

o.w.

The set of valid environments is just the union over all finite ranks:

Φ =
⋃
{Φi | i ≥ 0}

With this definition of Φ, we present the following rules for expression abstrac-
tion and invocation. They implement lexical scope by carrying the associated
environments along with expression abstractions.

2

Let Blocks

〈e1, φ[〈e0, φ〉/f], σ〉 → 〈n, σ′〉
〈let f ∼ e0 in e1, φ, σ〉 → 〈n, σ′〉

(LX1.let.ll)

To evaluate a let block, evaluate the body e1 using an environment in which
the defined function variable f is bound to a pair consisting of the abstracted
expression e0 and the current environment φ.

Invocation

〈ef , φf , σ〉 → 〈n, σ′〉
〈f(), φ, σ〉 → 〈n, σ′〉

where 〈ef , φf 〉 = φ(f) (LX1.call.ll)

To evaluate a function invocation, look up the function name f in the environ-
ment to get a pair consisting of an expression ef and an environment φf ; then
evaluate ef using environment φf and the current store.

1.1 An Example

We return to an example we discussed in connection with the dynamic scope
lazy rules:

let f ∼ 1 in let g ∼ f() in let f ∼ 2 in g()

Recall this program returns 1 using eager evaluation rules, but we showed that
it returns 2 using the dynamic scope lazy rules. Here we evaluate it using the
new lexical scope lazy rules to produce the correct answer (i.e. 1). As before,
the derivation is a simple chain of rule instances with one hypothesis each:

〈let f ∼ 1 in let g ∼ f() in let f ∼ 2 in g(), φ0, σ〉 → 〈1, σ〉

follows by rule (LX1.let.ll) with hypothesis

〈let g ∼ f() in let f ∼ 2 in g(), φ0[〈1, φ0〉/f], σ〉 → 〈1, σ〉

If we introduce the abbreviation

φ1 = φ0[〈1, φ0〉/f]

then the above relation is the conclusion of rule (LX1.let.ll) with hypothesis

〈let f ∼ 2 in g(), φ1[〈f(), φ1〉/g], σ〉 → 〈1, σ〉

3

Now abbreviate

φ2 = φ1[〈f(), φ1〉/g]

and this is the conclusion of rule (LX1.let.ll) with hypothesis

〈g(), φ2[〈2, φ2〉/f], σ〉 → 〈1, σ〉

This follows by rule (LX1.call.ll) with hypothesis

〈f(), φ1, σ〉 → 〈1, σ〉

since it is easy to verify that

(φ2[〈2, φ2〉/f])(g) = 〈f(), φ1〉

Note this is the point where the derivation using lexical lazy rules departs signif-
icantly from our previous derivation using dynamic lazy rules – this invocation
of f() is to be evaluated using environment φ1, which does not reflect the binding
f ∼ 2. Instead, we use rule (LX1.call.ll) with hypothesis

〈1, φ0, σ〉 → 〈1, σ〉

since

φ1(f) = 〈1, φ0〉.

As the expression in this hypothesis is irreducible, the derivation is complete.

1.2 Soundness

This section should contain a proof that the proof rules just developed satisfy
the copy rule. It is yet to be written

2 Recursive Procedures

In our discussion up to now we have interpreted the block

let f ∼ e0 in e1

4

as a nonrecursive definition. That is, the abstracted expression e0 is interpreted
in the surrounding environment, which does not include the new binding being
created for f . This intepretation is essential if we want the termination property
to hold for copy rule substitution. However, it prevents us from doing recursive
function declarations in the IMPX-1 language.

Here we modify the lazy lexical scope rules so they support recursive function
declarations.

Let’s replace the let block construct with rec blocks:

e ::= rec f ∼ e0 in e1

The interpretation is that free occurrences of f in e0 should be bound to the
newly introduced f rather than being free in the rec block as a whole. This
interpretation enables us to define recursive functions. For example, the expres-
sion

rec w ∼ if x > 0 then f();x = x− 1;w() else 0 in w()

should behave like the loop

while x > 0 do (f();x = x− 1)

Proceeding boldly down the garden path, let’s assume as in our previous se-
mantics that the the environment will contain pairs 〈e, φ〉, where e is a function
body and φ is the environment in which it should be evaluated, In that case the
rule for function invocations will be identical to rule (LX1.call.ll) above. What
will the rule for rec blocks look like? Presumably it will have the form

〈e1, φ[〈e0, φ
′〉/f], σ〉 → 〈n, σ′〉

〈rec f ∼ e0 in e1, φ, σ〉 → 〈n, σ′〉

and the only unanswered question is the exact form of φ′, the environment in
which the body of f (that is, e0) should be evaluated.

What can we say about φ′? In the nonrecursive rule (LX1.let.ll), φ′ is just
φ. In the recursive case, it is intuitively clear that φ will not suffice: φ′ must
include a binding for f ; and that binding should be the same one that is used
in evaluating the block body e1. This strongly suggests

φ′ = φ[〈e0, φ
′〉/f]

5

and we have arrived at the same foundational problems were were trying to avoid
when we defined Φ and the set of all finite-rank environments. A “continued
fraction” representation of φ′ would look something like

φ′ = φ[〈e0, φ[〈e0, φ[〈e0, . . .〉/f]〉/f]〉/f]

Where the ellipsis indicates “infinitely-deep” nesting. It should be clear no such
object exists in any finite-rank environment Φi.

Here are two ways to get out of this difficulty. Each is clever in its own way.

2.1 A Specialized Invocation Rule

We have argued that we need an unrealizable environment φ′ of infinite rank.
But we don’t really need it – we can instead change the invocation rule to
construct adequate approximations to φ′ “one rank at a time.” This approach
leads to the following pair of rules:

Rec Blocks

〈e1, φ[〈e0, φ〉/f], σ〉 → 〈n, σ′〉
〈rec f ∼ e0 in e1, φ, σ〉 → 〈n, σ′〉

(LX1.rec.ll)

This is identical to (LX1.let.ll).

Invocation

〈ef , φf [〈ef , φf 〉/f], σ〉 → 〈n, σ′〉
〈f(), φ, σ〉 → 〈n, σ′〉

where 〈ef , φf 〉 = φ(f) (LX1.callr.ll)

To evaluate a recursive function invocation, look up the function name f in the
environment to get a pair consisting of an expression ef and an environment
φf . then evaluate ef in the current store, using a new environment obtained by
re-introducing the definition of f into φf .

This rule has the effect of approximating the unrealizable φ′ incrementally. Note
that in the nonrecursive rule (LX1.call.ll), the environment φf appearing in the
hypothesis is at strictly lower rank than the original environment φ. In this rule,
the environment in the hypothesis is an updated version of φf , and is potentially
at the same rank as φ.

6

2.2 A Syntactic Transformation

Here is a slightly different solution, much more syntactic, and similar in spirit
to the while rule (LX.wht). We exploit the following syntactic equivalence:

rec f ∼ e0 in e1 ≡ rec f ∼ (rec f ∼ e0 in e0) in e1

(Note this is an equivalence for rec blocks, and not for let blocks.) We simply
build this syntactic transformation into the rec rule, as follows:

Rec Blocks

〈e1, φ[〈rec f ∼ e0 in e0, φ〉/f], σ〉 → 〈n, σ′〉
〈rec f ∼ e0 in e1, φ, σ〉 → 〈n, σ′〉

(LX1.rec.ll2)

In this rule, the environment for evaluating a recursive invocation binds f not
just to its definition e0, but to a newly-synthesized rec block defining f .

Invocation

〈ef , φf , σ〉 → 〈n, σ′〉
〈f(), φ, σ〉 → 〈n, σ′〉

where 〈ef , φf 〉 = φ(f) (LX1.rcall.ll2)

This rule is identical to (LX1.call.ll).

It is a fairly easy exercise to prove the equivalence of these two approaches.

7

