
CS411 Notes 6 – Copy Rule Definition

A. Demers

12 Feb 2001

As threatened, we now give a formal development of a copy rule for which we
can give lazy evaluation proof rules.

1 Substitution

We start with a formal definition of substitution. We will denote by

[e/f]e0

the result of replacing all free occurrences of the function variable f by expres-
sion e in e0. Deciding which occurrences of f will be “free” (hence candidates
for substitution) is the hard part. This definition of free variables is implicit
in the definition of substitution, and affects only the cases involving expression
abstractions, which are presented last.

As you would expect, the definition is by recursion on the structure of Exp.
The rules for IMPX without function declarations are obvious, and are given
here without comment. Parentheses are for the reader’s convenience in grouping
terms, and are not part of the actual syntax.

[e/f]n = n

[e/f]X = X

[e/f]ψe0 = ψ[e/f]e0

[e/f]e0θe1 = ([e/f]e0)θ([e/f]e1)

[e/f]X ← e0 = X ← ([e/f]e0)

1

[e/f](e0; e1) = ([e/f]e0); ([e/f]e1)

[e/f](if e0 then e1 else e2) = if [e/f]e0 then [e/f]e1 else [e/f]e2

[e/f](while e0 do e1) = while [e/f]e0 do [e/f]e1

Again, these clauses are straightforward. Now comes the hard part: the IMPX-1
rules involving expression abstractions.

[e/f]g() = g() where g 6≡ f

[e/f]f() = e

[e/f](let g ∼ e0 in e1) = let g ∼ ([e/f]e0) in ([e/f]e1)

I lied – those rules were easy, too. The real difficulty arises when we try to define
substitution into a let block that reuses some function variable f . The following
(arguably broken) attempt reflects the (arguably broken) lazy evaluation rule
(LX1.call.l) from above:

[e/f](let f ∼ e0 in e1) = let f ∼ e0 in e1 (SUB.call.bad)

One consequence of this definition is that occurrences of f in e1 are not replaced.
That seems fine – such occurrences should refer to the newly-introduced binding
e0 for f . But what about occurrences of f in e0? Definition (SUB.call.bad) says
such occurrences also are not replaced, leading to the problems of dynamic
scoping we’ve discussed earlier. The alternative – which works out much better,
trust me – is to substitute into e0:

[e/f](let f ∼ e0 in e1) = let f ∼ [e/f]e0 in e1 (SUB.call)

Eventually, this will lead to a system in which the defining expression e0 in an
abstraction gets its meaning from the context surrounding the let block, in spite
of the possibility that occurrences of e0 may be substituted into deeply nested
subexpressions of e1 by the semantic rules. Of course, we have more work to do
before we get to that point.

As we have already mentioned, there is a notion of ‘ ‘free variable” implicit in
any definition of substitution. What definition of free variable is induced by

2

the substitution definition just given? A straightforward structural recursion
defines the “Free Function Variables” of an element of Exp, a function

FFV : Exp→ 2Fname

that computes the (finite) set of free variables of an IMPX expression. Most of
the clauses have the simple form

FFV (. . . ei . . .) = . . . ∪ FFV (ei) ∪ . . .

For example,

FFV (n) = ∅

FFV (ψe0) = FFV (e0)

FFV (e0; e1) = FFV (e0) ∪ FFV (e1)

and so forth, so we won’t give them all explicitly. As usual, the interesting claus-
es in the definition deal with the constructors of IMPX-1 that define expression
abstractions themselves:

FFV (f()) = {f}

This clause states that a reference to function variable f is free in itself, which
should not be too surprising.

FFV (let f ∼ e0 in e1) = FFV (e0) ∪ (FFV (e1)− {f})

This clause reflects the fact that, using the form (SUB.call) for the definition
of substitution above, any free variable of e0, including f itself, is a candidate
for substitution, and thus is a free variable of the let block. However, a free
occurrence of f in e1 is not free in the let block, as it is bound to the new
definition f = e0 being introduced by the block.

2 Capture

Recall our earlier discussions of “capture” of free variables during substitution.
Informally, capture occurs when an expression e containing free variable f is
substituted into the scope of a let block that (re-)defines f , for example

[g()/f]let g ∼ 1 in f() + f()

3

As usual, we can give a formal definition of this concept by recursion on the
structure of program expressions. We define a predicate K such that

K(e, f, e′) ⇔ [e/f]e′ results in capture

The clauses of the definition are:

K(e, f, let f ∼ e0 in e1) = K(e, f, e0)

K(e, f, let g ∼ e0 in e1) = K(e, f, e0) ∨K(e, f, e1) ∨
((f ∈ FFV (e1)) ∧ (g ∈ FFV (e)))

The final disjunct of this clause is the important one – in words, f occurs free
in the block body and g occurs free in the expression being substituted there.

K(e, f, f()) = false

Yes, I really mean false here. You might expect true, but that case is covered
by the previous clause.

K(e, f, . . . ei . . .) = . . . ∨K(e, f, ei) ∨ . . .

This is our usual catch-all clause – capture occurs in an expression if it occurs
in any of its subexpressions.

3 Substitution Without Capture

We are now in a position to define a substitution operation that explicitly avoids
capture. We denote by

[e//f]e0

the capture-avoiding (or safe) substitution of e for f in e0.

For most constructors the definition of [·//·](·) corresponds exactly with that of
[·/·](·). Thus,

[e//f]n = n

4

[e//f]X = X

[e//f]ψe0 = ψ([e//f]e0)

and so forth, until we get to the final few clauses for the IMPX-1 constructors
that treat function references and let blocks. Function references are simple:

[e//f]g() = g g 6≡ f

[e//f]f() = e

The clauses for substituting into a let block are sufficiently subtle that I got
them wrong in lecture the first time. To motivate them, observe that capture
occurs when an expression e is substituted into the body a let block that binds
some variable f that occurs free in e. Therefore, we can avoid capture by
making certain that, whenever an expression e is substituted into the body of
a let block, the bound variable of that let block does not occur free in e. This
is not difficult to achieve. We simply rename the bound variables of let blocks
when we substitute into them. Specifically, consider the two blocks

let f ∼ e0 in e1 and let g ∼ e0 in [g()/f]e1

where there are no free occurrences of g in e1. These blocks are not quite
equivalent. The first block will capture free occurrences of f substituted into it;
the second will capture free occurrences of g. Absent free occurrences of f or g,
the blocks behave identically. Absent free occurrences of g, the renaming of f
to g has the effect of eliminating capture of f . This near-equivalence should be
intuitively clear: the particular bound variable name used in a let block should
not matter, as long as it is used consistently and does not cause capture. The
following clauses avoid capture by renaming the bound variable of any let block
encountered during substitution, choosing a new name that cannot possibly
participate in capture.

[e//f](let g ∼ e0 in e1) = let h ∼ [e//f]e0 in [e//f]([h/g]e1)

[e//f](let f ∼ e0 in e1) = let h ∼ [e//f]e0 in [h/f]e1

where h is a new variable that does not occur in the original expressions. To
ensure that [·//·](·) is a single-valued function the new variable h must be chosen
deterministically. This is fairly easy to arrange – for example, given a well-
founded total order on Fname, simply let h be the least name not appearing
(either free or bound) in e or e1.

The following property is easy to prove by structural induction, but is not quite
automatically true, and deserves to be noted:

5

Theorem: Let

e0 ∈ Exp and e1 ∈ Exp

Then

[e0/f]e1 ∈ Exp and [e0//f]e1 ∈ Exp

That is, syntactic correctness of expressions is preserved by either ordinary
substitution or safe substitution.

4 Lexical Scope Copy Rule

Finally we have enough mechanism to define precisely a copy rule for lexical
scope. Recall our informal presentation of the copy rule

let f ∼ e0 in . . . f . . . f . . . ⇒ e0 . . . e0 . . .

Even with the new formal definition of safe substitution, [·//·](·), this technically
does not provide a definition of copy rule substitution, since it only tells us what
to do with an expression whose top-level constructor is let.

There are (at least) two ways we can proceed.

1. We can define a function C that maps expressions to equivalent “copy-
rule-expanded” expressions. Naturally, this will be done by recursion on
the structure of expressions. Such a definition is guaranteed to produce a
well-defined function, because it imposes a particular order in which copy
rule substitutions must be performed.

2. We can give a set of proof rules defining a relation 7→∗ that holds between
expressions e0 and e1 whenever e1 can be obtained from e0 by some number
of applications of copy rule expansion. With a little care, we can define the
proof rules to allow copy rule substitutions to be performed on arbitrary
proper subexpressions in arbitrary order. We have already done examples
of copy rule substitution on proper subexpressions many times in this
discussion – this just reflects the intuitive notion that one can always
“substitute equals for equals.” This approach raises soundness issues. For
example, there is no automatic guarantee that an expression cannot be
provably reducible to two different numbers.

Below we pursue both approaches.

6

4.1 Copy Rule as Function

Here we define the copy rule as a function C that maps each expression to an
equivalent expression from which all let blocks have been eliminated by copy
rule substitutions.

As usual, the clauses for IMPX constructors are straightforward.

C(n) = n

C(X) = X

C(ψe0) = ψ(C(e0))

and so on, through

C(while e0 do e1) = while C(e0) do C(e1)

Now the interesting clauses for the IMPX-1 abstraction rules:

C(f()) = f()

C(let f ∼ e0 in e1) = [C(e0)//f]C(e1)

The use of capture-avoiding substitution in this clause is absolutely critical. It
is the reason this copy rule definition corresponds to lexical rather than dynamic
scope.

Note also the ordering imposed on substitution by this last clause. It says that
we reduce the let block

let f ∼ e0 in e1

by substituting the fully-reduced version of e0 into the fully-reduced version of
e1. Thus, reduction proceeds in some sense “bottom-up.”

4.2 Copy Rule as Proof Rules

Here we pursue the second approach discussed above for defining the copy rule.
We give proof rules defining a relation 7→∗ corresponding to one or more appli-
cations of copy rule substitution.

7

Reflexivity

e 7→∗ e

Every expression reduces to itself by applying 0 substitutions.

Transitivity

e0 7→∗ e1 e1 7→∗ e2

e0 7→∗ e2

Two reduction sequences can be “pasted together” to produce a longer reduction
sequence.

Substitutivity

e0 7→∗ e′0 e1 7→∗ e′1
[e0//f]e1 7→∗ [e′0//f]e′1

This rule allows substitution of equals for equals. It’s subtle, and deserves
careful thought. I sincerely hope (and believe) I’ve got it right . . .

Abstraction

let f ∼ e0 in e1 7→∗ [e0//f]e1

This rule relates let binding to capture-avoiding substitution.

4.3 Properties of the Definitions

If you have ever studied the lambda calculus, you will have noticed a close
connection between the α and β conversion rules of the lambda calculus and
our discussion of the copy rule and capture in IMPX. Eventually we shall
discuss the lambda calculus, and we’ll defer formal proofs to that part of the
course. But just for the record, we state the corresponding properties of IMPX
here without proof.

8

Termination The termination property states that there are no infinite re-
duction sequences; that is, there is no way for a copy rule reduction sequence to
get into an infinite loop. This is also a property of the typed (but not the un-
typed) lambda calculus. Since our proof rules define a reflexive relation 7→∗, we
have to characterize finiteness of reduction sequences in a slightly roundabout
way.

We say a sequence e0, e1, . . . is eventually constant if

(∃i)(∀j > i)ej = ei

Given that definition, the termination property of the copy rule is simply

Theorem: Every countably infinite 7→∗ chain is eventually constant.

Note it is obvious from the definition of C that every IMPX expression has
at least one reduction sequence that terminates in an irreducible expression
(an expression that contains no let blocks). The theorem implies the stronger
claim that every nontrivial infinite reduction sequence eventually reaches an
irreducible expression; i.e., it is not possible to make an infinite sequence of
“bad” choices and thereby fail indefinitely to reach an irreducible expression.

Confluence The confluence property is a consistency property of the proof
rules:

Theorem: Suppose

e0 7→∗ e1 and e0 7→∗ e2

Then there exists e3 such that

e1 7→∗ e3 and e2 7→∗ e3

Thus, any e reduces to at most one irreducible expression.

Combining the above theorems, we get the delightful conclusion that for a given
expression e every reduction sequence eventually terminates in the same irre-
ducible expression C(e).

Soon we shall present a new set of lazy evaluation proof rules that implement
lexical scope. To prove these rules are consistent with our newly-defined copy
rule, it will suffice to show that they agree with the old semantics on the language

9

without abstractions (i.e. the IMPX subset), and evaluation of an expressions e
containing let blocks is equivalent to evaluation of the let-block-free expression
C(e).

We could defined a C function and 7→∗ relation using unsafe substitution [·/·](·)
rather than capture-avoiding substitution [·//·](·). What would happen? If
you experiment with a few of the examples of capture we used earlier in our
discussion of dynamic scope, you will discover that the confluence property fails.
The failure of confluence – hence the failure of an expression to have a unique
equivalent irreducible form – is for me the strongest argument against dynamic
scope.

10

