
CS411 Notes 4-5 – Abstraction I

A. Demers

12 Feb 2001

1 IMPX

The original IMP syntax uses separate syntactic sets to enforce some limited
static semantic properties – for example, some primitive type checking is per-
formed by maintaining a distinction between Aexp (arithmetic expressions)
and Bexp (Boolean expressions).

Eventually we shall specify typechecking and other static semantic checks using
proof rules, similar to the rules of our structural operational semantics. Proof
rules are considerably more powerful than the original technique, and very soon
now we will need the extra power. As an added benefit, using proof rules for
static semantics will enable us to simplify the formation rules for the language,
since they will no longer be required to do any typechecking.

In the next couple of lectures we won’t yet be doing any sophisticated type-
checking; but we would still like a simpler set of formation rules. So here is
a revised version of IMP called IMPX in which we eliminate the distinction
between numeric and Boolean expressions (we use integers in place of Booleans,
in the style of C), and we eliminate the distinction between commands and ex-
pressions (every language construct produces a value, and expressions can affect
the store). The name “IMPX” comes from “IMPerative eXpression language.”

We give the formation rules and a large-step structural operational semantics
for IMPX. By this point you should be fairly comfortable with a succinct
presentation like this . . .

1.1 Syntax

The syntax of IMPX requires only three syntactic sets:

N the (positive and negative) integers.

1

Loc the set of locations of program variables.

Exp the set of expressions.

The associated notational conventions are:

N contains n, n′, n′′, n0, n1, . . .

Loc contains X,X ′, X0, Y, Y
′, Y0, . . .

Exp contains e, e′, e′′, e0, e1, . . .

The formation rules for IMPX are:

e ::= n | X | ψe0 | e0θe1 | X ← e0 | e0; e1

| if e0 then e1 else e2 | while e0 do e1

Here ψ is any unary operator (e.g. ¬ or unary −) and θ is any binary operator
(e.g. +, ∗, ∨).

1.2 Large Step Semantics of IMPX

Here is a large step semantics for the new language.

The definition of the store is unchanged from our large step semantics for IMP :

Σ = Loc→ N

that is, the store consists of (total) functions from locations to values. Technical-
ly, it would be sufficient to use “finite” (almost-everywhere-constant) functions,
as defined in the first problem set, or even (with just a little more work) finite
sets of pairs 〈X,n〉.

Since IMPX makes no distinctions among arithmetic and Boolean expressions
and commands, we need only one kind of configuration instead of three. A
configuration is a pair

〈e, σ〉 e ∈ Exp, σ ∈ Σ

A configuration represents an expression to be evaluated in a store. A terminal
configuration is one in which the expression part is already fully evaluated –
that is, a configuration of the form 〈n, σ〉.

2

The large step execution relation → holds between a configuration and a termi-
nal configuration. Relation

〈e, σ〉 → 〈n, σ′〉

holds when evaluation of e starting in state σ terminates producing the result
value n ∈ N and final state σ′.

The proof rules for IMPX are quite similar to those for IMP with the resultis
extension (which allows expressions to affect the store, as discussed in the first
problem set).

Variables

〈X,σ〉 → 〈σ(X), σ〉
(LX.vref)

A variable reference evaluates to the contents of the variable’s location in the
store, and has no effect on the store.

Unary Operations

〈e0, σ〉 → 〈m,σ′〉
〈ψe0, σ〉 → 〈n, σ′〉

where n = ψm (LX.unop)

According to this rule a unary operator returns a result without affecting the
store. The final store σ′ results from evaluating the subexpression e0 returning
the value m; evaluation of n = ψ(m) happens in σ′ with no side effects.

Binary Operations

〈e0, σ〉 → 〈n0, σ0〉 〈e1, σ0〉 → 〈n1, σ1〉
〈e0θe1, σ〉 → 〈n, σ1〉

where n = n0θn1 (LX.binop)

As we argued for the (LX.unop) rule, evaluation of a binary operator application
returns a result without affecting the store.

Assignments

〈e, σ〉 → 〈n, σ′〉
〈X ← e, σ〉 → 〈n, σ′[n/X]〉

(LX.asgn)

An assignment updates the store at the specified location to the value of the
right-hand-side expression with no further effect on the store; it also produces
the computed value as its result.

3

Sequential Composition

〈e0, σ〉 → 〈n0, σ
′′〉 〈e1, σ

′′〉 → 〈n1, σ
′〉

〈e0; e1, σ〉 → 〈n1, σ′〉
(LX.seq)

Evaluation of the sequential composition e0; e1 can be understood as the con-
secutive evaluation of e0 and e1 where the intermediate state σ′′ (the result of
executing e0) appears explicitly in the instantiated rule. The value produced
by e0 is discarded (though we require that evaluating e0 terminates producing
some value). The value produced by e1 is returned.

Conditionals

〈e0, σ〉 → 〈n0, σ
′′〉 〈e1, σ

′′〉 → 〈n1, σ
′〉

〈if e0 then e1 else e2, σ〉 → 〈n1, σ′〉
where n0 6= 0 (LX.ift)

Evaluation of a conditional whose test evaluates “true” (i.e., nonzero) evaluates
the then clause, e1.

〈e0, σ〉 → 〈n0, σ
′′〉 〈e2, σ

′′〉 → 〈n2, σ
′〉

〈if e0 then e1 else e2, σ〉 → 〈n2, σ′〉
where n0 = 0 (LX.iff)

Evaluation of a conditional whose test evaluates “false” (i.e., zero) evaluates the
else clause, e2.

Loops

〈e0, σ〉 → 〈0, σ′〉
〈while e0 do e1, σ〉 → 〈0, σ′〉

(LX.whf)

A loop whose condition evaluates “false” terminates immediately with no further
effect on the store, producing the value 0.

〈e0, σ〉 → 〈n0, σ
′′〉 〈e1; while e0 do e1, σ

′′〉 → 〈n, σ′〉
〈while e0 do e1, σ〉 → 〈n, σ′〉

(LX.wht)

where n0 6= 0. Execution of a loop whose condition evaluates “true” is equivalent
to “unrolling” the loop once – that is, executing the loop body e1 and then re-
executing the entire loop. Note the result ultimately produced by a terminating
loop will necessarily be 0 by (LX.whf).

4

2 Abstraction and the Copy Rule

We are going to introduce a number of “principles” of language design, and illus-
trate them using variants of IMPX and (usually) large step semantics. Probably
the most important of these principles is Abstraction. The version below is quot-
ed from the Schmidt text, where it is attributed to Peter Landin in an early
paper on Algol60.

Principle of Abstraction: The phrases of any semantically meaningful syn-
tactic class may be named.

Stated thus, the principle is vague in at least a couple of ways.

First, what is the meaning of “semantically meaningful syntactic class” in the
Principle? This is not an easy question to answer. Indeed, given an awkward
syntactic definition I could probably manage to make every syntactic set se-
mantically meaningful by giving a similarly awkward semantics. However, an
example may help clarify the intent. The constructors for IMPX include

e ::= e0θe1 | . . .

to generate expressions over binary operators. We might instead have described
the binary expressions by

e ::= e0d

where d is in a new syntactic set D including the rules

d ::= θe0d0 | 〈empty〉

This new definition does indeed describe the same set of concrete expressions
(though not exactly the same abstract syntax trees).

An element of D represents the “tail” of a compound binary expression, some-
thing like

d = + 3−X

Is this a “semantically meaningful” phrase or not? We could certainly devise
a denotational semantics that gave meaning to an element of D as a function
from values and states to values and states, for example

[[+3−X]](〈m,σ〉) = 〈n, σ〉 where n = m+ 3− σ(X)

5

But we won’t be discussing denotational semantics for a while yet. The con-
figurations and evaluation relation for the corresponding operational semantics
would be rather more complex than the ones we have been using, and it is hard
to see what it would mean to bind a name to such an ill-formed subexpression.
Probably it would not be wise to apply the Abstraction Principle to phrases of
D.

The second imprecision in our statement of the Abstraction Principle is the
meaning of “may be named.” Obviously just naming a phrase is uninteresting
without a way subsequently to refer to the phrase by name. Referring to a
name is generally described by some form of syntactic substitution. In the same
spirit of precision embodied by the Abstraction Principle itself, we propose:

Copy Rule: A reference to a defined name may be syntactically replaced by
a copy of the phrase bound to that name, yielding an equivalent program.

More symbolically, though not much more precisely,

define f by α in . . . f . . . f . . . ≡ α . . . α . . .

The term “copy rule” also dates back at least as far as Algol60.

Having developed a bit of intuition about the Abstraction Principle’s notion of
“naming semantically meaningful phrases,” let’s try to apply that intuition to
IMPX. There are three syntactic classes in IMPX: N, Loc, and Exp. Intu-
itively each of them is “semantically meaningful,” and the result of abstracting
with respect to any of them is a more-or-less familiar concept from programming
languages:

Numbers: A named number is just a constant declaration, as in Java, C++
and a host of other languages.

Locations: What is a named location in IMPX? Roughly, it is a name for
a variable name – an alias. Few programming languages support alias as an
explicit construct (it is similar, but not identical, to pointers). However, the
notion exists in the somewhat disguised form of call-by-reference parameters in
many languages, for example Pascal and C++.

Expressions: An expression abstraction – a named expression – corresponds
to a 0-argument function or procedure in a conventional imperative program-
ming language.

6

Because numbers and locations are atomic syntactic elements, they cannot con-
tain references to newly-abstracted names, and it is comparatively easy to define
number and location abstractions that obey a sensible copy rule. The structure
of expression abstractions is much richer – an expression can contain references
to previously-defined abstractions, or (if we’re not careful) even to not-yet-
defined abstractions. Such “free variables” and “capture” are where most of
the interesting behavior arises, so we’ll concentrate on expression abstraction
below.

3 IMPX with Expression Abstraction

In this section we extend IMPX by expression abstractions, which we shall often
just call “functions” even though they have no parameters. Creatively, we call
the resulting language IMPX-1.

We want to add expression abstraction to IMPX, without adding any static
semantics checking proof rules. A little thought should convince you that we
will need to add a new syntactic set of names:

Fname: an infinite set of function names

with the convention

Fname contains f, f ′, fi, . . . , g, g′, gi, . . .

Here (and whenever we define syntax by formation rules), we follow the conven-
tion that all the ground syntactic sets are disjoint. Specifically, we assume

Loc ∩ Fname = ∅

so any given name may be either a function name or a location but not both.

With these new syntactic sets, the extension of IMPX to IMPX-1 requires only
two new constructors. The first new constructor binds a name to an expression:

e ::= let f ∼ e0 in e1

The second new constructor refers to a name:

e ::= f()

7

The parentheses in function reference are not strictly necessary, but they make
program examples a bit easier to read.

We illustrate the intended meaning by a few examples. Keep in mind that our
goal is for IMPX-1 programs to obey some sensible form of copy rule.

let f ∼ 17 in f() + 3 returns 20

This example is straightforward. Since evaluating the expression 17 always
terminates producing the same result valus with no effect on the store, the
behavior is indistinguishable from a constant declaration.

let f ∼ 2 ∗X in (X ← 1) + f() + (X ← 2) + f() returns 9

In this example the final store contains 2 at location X.

let f ∼ while 1 do 0 in f() diverges

The while loop inside f fails to terminate.

These intended meanings reflect some rather serious implicit assumptions. Next
we’ll develop a large step semantics for IMPX-1, and in the process make some
of these assumptions (and their consequences) explicit.

4 Rules for Abstractions – Preliminaries

When we defined IMPX-1 by adding abstractions to IMPX, we added a new
syntactic set Fname of names for abstracted expressions. This will force us
to change the structure of the operational semantics. We need a way to carry
around the definitions for the names that have been introduced in a program.
For this we introduce function environments. An environment φ ∈ Φ will map
names to their values, that is

Φ = Fname→ Fval

We haven’t yet defined the set Fval of function values, but we’ll explore several
possibilities below.

The semantic rules for IMPX-1 will describe evaluation of an expression with a
given environment φ and a given initial store σ; they will enable us to determine

8

the result value and the final store. Thus, the evaluation relation → will be a
5-place relation, with the interpretation that

〈e, φ, σ〉 → 〈n, σ′〉

holds exactly if e, when evaluated in environment φ and initial store σ, can
terminate returning value n with final store σ′.

Augmenting the semantic rules to handle environments is quite straightforward
for all the constructors of IMPX – that is, the constructors that do not involve
defining or referring to abstractions. It simply involves carrying an environment
unchanged between hypotheses and conclusion. A few examples of constructing
an IMPX-1 rule from the corresponding IMPX rule should make this clear.

The rule (LX.vref) is

〈X,σ〉 → 〈σ(X), σ〉

Since there are no hypotheses, the rule simply becomes

〈X,φ, σ〉 → 〈σ(X), σ〉
(LX1.vref)

When one or more hypotheses are involved, the environment is duplicated with-
out change. For example, rule (LX.binop) is

〈e0, σ〉 → 〈n0, σ0〉 〈e1, σ0〉 → 〈n1, σ1〉
〈e0θe1, σ〉 → 〈n, σ1〉

n = n0θn1

When environments are propagated to the hypotheses, the rule becomes

〈e0, φ, σ〉 → 〈n0, σ0〉 〈e1, φ, σ0〉 → 〈n1, σ1〉
〈e0θe1, φ, σ〉 → 〈n, σ1〉

n = n0θn1 (LX1.binop)

This pattern continues absolutely unchanged through the remaining IMPX

rules.

Finally we reach the interesting rules – the ones that describe abstractions in
IMPX-1.

It should be clear that the rule for let blocks will involve inserting something
into the environment; and the rule for referring to an abstraction (“function
call”) will involve looking up the referenced name in the enviroment and using
the result somehow. Thus, we can no longer put off defining the set Fval of
function values, since these are what the environment contains.

9

What should we use as the “value” of an expression abstraction? On the face
of it, there appear to be two equally sensible approaches.

One approach is to note that the value of an expression is a number. We let

Fval = N (FV-eager)

To evaluate the definition of an expression abstraction, we evaluate the expres-
sion to produce a number, which we insert into the environment. References to
the defined name are evaluated by looking up the number in the environment
and returning it. This approach is usually called eager evaluation, because the
abstracted expression is evaluated once, as early as possible.

An alternative approach is to keep unevaluated expressions in the environment.
We let

Fval = Exp (FV-lazy)

To evaluate the definition of an expression abstraction, we insert the expression
itself directly into the environment. References to the defined name are evalu-
ated by looking up the expression in the environment and evaluating it at that
point to produce a number. This approach is usually called lazy evaluation,
because the abstracted expression is not evaluated until its value is needed.

Eager and lazy evaluation have very different properties. As we shall see, neither
of them obeys a reasonable copy rule.

5 Eager Rules

Here are rules for eager evaluation of expression abstractions. These rules use
the environment definition (FV-eager) from above.

Let blocks

〈e0, φ, σ〉 → 〈m,σ′′〉 〈e1, φ[m/f], σ′′〉 → 〈n, σ′〉
〈let f ∼ e0 in e1, φ, σ〉 → 〈n, σ′〉

(LX1.let.e)

To evaluate a let block, first evaluate the bound expression e0 returning some
integer m, then evaluate the body e1 in the resulting store using an environment
in which the defined function variable f is bound to m.

10

Invocation

〈f(), φ, σ〉 → 〈φ(f), σ〉
(LX1.call.e)

To evaluate a function invocation, look up the function name in the environment
and return the value found, with no effect on the store.

These rules have some appeal. They are certainly simple to understand. How-
ever, even without a formal definition of the copy rule, we can argue that the
rules do not satisfy any reasonably-defined copy rule. There are (at least) three
different ways a copy rule can fail under eager evaluation.

Effects. Because IMPX has constructs that modify a shared store, an ab-
stracted expression that depends on the store can violate the copy rule. For
example, the program

X ← 1; let f ∼ X in f() + (X ← 2) + f()

returns 4 under eager evaluation. By the copy rule, we would expect it to be
equivalent to the transformed program

X ← 1; . . . X + (X ← 2) +X

But this program returns 5 rather than 4, because the second evaluation of
program variable X sees the updated value 2 rather than the initial value 1. It
is easy to construct examples in which the relevant store modifications happen
in the abstracted expression itself, such as

X ← 2; let f ∼ X ← X ∗ 3 in f() + f() + f()

which returns 18 under eager evaluation and 78 under the copy rule.

Nontermination. Because IMPX has looping expressions, a program might
abstract an expression containing a nonterminating loop. The program

let f ∼ (while 1 do 17) in 2

diverges under eager evaluation attempting to evaluate the while expression.
The copy rule substitutes the abstraction into the program body 0 times (since
there are no invocations of f in the program body); resulting in the program

2

which clearly terminates.

11

Capture of Free Variables. This is the most subtle and interesting way
to violate the copy rule. An expression being abstracted may itself contain
references to abstraction names. How should these references be interpreted?
Our evaluation rules interpret them according to the environment φ in effect
at the point of evaluation. Because the copy rule has the effect of copying a
expression, potentially to many different points of a program, it may have the
effect of changing the environment in which evaluation takes place. For example,
under our eager evaluation semantics the program

let f ∼ 1 in let g ∼ f() in let f ∼ 2 in g()

returns 1, reflecting the binding of f at the point where g is defined.

What does the copy rule say about this program? We might substitute the
definition f ∼ 1 into the definition of g to get

. . . let g ∼ 1 in let f ∼ 2 in g()

leading to a program that returns 1, just as the eager semantics says. However,
it is at least plausible that we could substitute the definition g ∼ f() for the use
of g in the inner block, to get

. . . let f ∼ 2 in f()

leading to a program that returns 2 rather than 1. Which is the “correct”
interpretation?

An similarly problematic case arises whenever a let block redefines a function
name that is used in the abstracted expression. For example, what is the mean-
ing of

let f ∼ 1 in let f ∼ f() + 1 in f()

Using the eager evaluation rules, this program returns 2 – the “outer” definition
of f yields a function that returns 1, the “inner” definition of f redefines f in
terms of its previous definition (verify this from the rules), yielding a function
that returns 2, and the latter function is invoked within the body of the program.
What does the copy rule say?

These examples are problematic partly because they illustrate the imprecision
of our definition of the copy rule (or really in our lack of a definition up to
this point). Let’s rewrite the last example with a subscript to identify each
occurrence of f :

let f0 ∼ 1 in let f1 ∼ f2() + 1 in f3()

12

Consider applying the copy rule to this example. Naively, the copy rule says
we should substitute 1 (the defining expression in the outermost let block) for
occurrences of f in the block body.

1. Should we substitute for f1? Certainly not! f1 is a binding occurrence,
a definition or “declaration” of the name f ; substituting an expression
for f1 doesn’t make sense (and doesn’t even yield a syntactically correct
program).

2. Should we substitute for f3? Again, we should not. The invocation f3

in in the body of the inner let block; it should refer to the definition f1.
Substituting the defining expression from definition f0 would be wrong.

3. Should we substitute for f2? Gosh. Think about this: if we don’t sub-
stitute for f2, that will have the effect of defining f1 in terms of itself.
If we do substitute for f2, the effect will be to define f1 as 1 + 1, which
is probably closer to the programmer’s intent, and certainly closer to the
meaning given by the eager evaluation rules. We may have to revisit this,
however, when we consider recursive function definitions.

4. After substituting 1 for f everywhere we choose to do so, do we remove
the let block introducing f0 or do we keep it? More generally, does the
copy rule say

let f ∼ e0 in . . . f . . . −→ . . . e0 . . .

or

let f ∼ e0 in . . . f . . . −→ let f ∼ e0 in . . . e0 . . .

These are definitely not equivalent when e0 may contain occurrences of f .

We have raised four questions on interpreting the copy rule. We argued (con-
vincingly, I hope) that the answers to the first two should be “no.” For the last
two, we answered “maybe.” This really does make a difference. You should
convince yourself that our second example program

let f ∼ 1 in let f ∼ f() + 1 in f()

returns the result

• 2 if eager evalutation is used,

• 2 under the 〈no, no, yes, yes〉 interpretation of the copy rule,

13

• divergence under the 〈no, no, no, no〉 interpretation of the copy rule.

Even worse, using the 〈no, no, no, no〉 copy rule, our first example program

let f ∼ 1 in let g ∼ f() in let f ∼ 2 in g()

returns

• 1 if we substitute for the outer definition first, and

• 2 if we substitute for the inner definition first.

So the result is not even well-defined!

The conclusion to draw from all this: if we want to say something rigorous
relating our semantic rules and the copy rule, we will need a precise formal
definition of the copy rule. We’ll get there eventually, but the definition will
ultimately be motivated by some observations on the behavior of lazy evaluation
rules; so we present some lazy rules first.

6 Lazy Rules – First Attempt

The intuition behind “lazy evaluation” is to avoid evaluating an expression
abstraction until it becomes absolutely necessary to do so. To achieve this,
instead of an environment of numeric values we use the definition (FV-lazy)
from above:

Fval = Exp (FV-lazy)

That is, we keep unevaluated expressions (elements of Exp) in the environment.

The semantic rules for abstractions now become

Let blocks

〈e1, φ[e0/f], σ〉 → 〈n, σ′〉
〈let f ∼ e0 in e1, φ, σ〉 → 〈n, σ′〉

(LX1.let.l)

To evaluate a let block, evaluate the body e1 using an environment in which
the defined function variable f is bound to the abstracted expression e0.

14

Invocation

〈φ(f), φ, σ〉 → 〈n, σ′〉
〈f(), φ, σ〉 → 〈n, σ′〉

(LX1.call.l)

To evaluate a function invocation, look up the function name in the environment
to get an expression, then evaluate that expression using the current environ-
ment and store.

This definition, like the eager one, has some intuitive appeal. Moreover, it avoids
the first two problem areas we discussed in connection with eager evaluation and
the copy rule. Specifically, we gave an example that violated the copy rule due to
effects on the store, and another example that violated the copy rule because of
a nonterminating loop. You should verify that neither of these examples causes
a problem when the lazy rules are used. Using the lazy rules, these example
programs behave identically before and after expansion by the copy rule.

As before, the interesting behaviour happens when an expression being abstract-
ed may itself contain references to (its own or other) abstraction names.

Recall the first example we used to show that eager evaluation does not obey
the copy rule:

let f ∼ 1 in let g ∼ f() in let f ∼ 2 in g()

Recall this program returns 1 using eager evaluation rules, but returns 2 when
transformed by the copy rule. This program also returns 2 using the lazy e-
valuation rules. The derivation is a simple chain of rule instances with one
hypothesis each:

〈let f ∼ 1 in let g ∼ f() in let f ∼ 2 in g(), φ0, σ〉 → 〈2, σ〉

by rule (LX1.let.l) with hypothesis

〈let g ∼ f() in let f ∼ 2 in g(), φ0[1/f], σ〉 → 〈2, σ〉

by rule (LX1.let.l) with hypothesis

〈let f ∼ 2 in g(), φ0[1/f][f()/g], σ〉 → 〈2, σ〉

by rule (LX1.let.l) with hypothesis

〈g(), φ0[1/f][f()/g][2/f], σ〉 → 〈2, σ〉

15

by rule (LX1.call.l) with hypothesis

〈f(), φ0[1/f][f()/g][2/f], σ〉 → 〈2, σ〉

by rule (LX1.call.l) with hypothesis

〈2, φ0[1/f][f()/g][2/f], σ〉 → 〈2, σ〉

which is irreducible.

A slightly more involved example (presented without derivation):

let f ∼ 1 in let g ∼ f() in g() + (let f ∼ 2 in g())

Using lazy evaluation rules this evaluation returns 3. The first evaluation of
g() returns 1, computed using the outer definition f ∼ 1; the second evaluation
of g() returns 2, computed using the inner definition f ∼ 1. The same result
could be produced using the 〈no,no,no,no〉 interpretation of the copy rule.
In fact, once we have suitably formalized the definition of the copy rule, it will
be possible to show (by a nontrivial induction on derivations) that our lazy
evaluation rules always obey the 〈no,no,no,no〉 copy rule.

One can see from the above examples (or by directly examining proof rule
LX1.call.l) that a function invocation is evaluated using the environment in
effect at the point of invocation, not the environment in effect at the point
of definition. Thus, two different invocations of the same function may be
evaluated using completely different environments, thus may have completely
different meanings. Arguably this is not very desirable behavior, but it is simple
to implement (inefficiently, at least), and it has been used in real systems (LISP,
APL).

The property that the dynamic execution path leading to a function invocation
determines the environment used to evaluate it has inspired the term “dynamic
scope” to describe this name lookup strategy. Contrast this with “static scope”
(or often “lexical scope”), in which the evaluation environment is determined
by the definition of the function.

We are about to develop a lazy semantics for lexical scope. At this point we
can no longer defer giving precise definitions for substitution and the copy rule,
since we’re going to need to change them in rather subtle ways.

But here is one final example to illustrate the badness of dynamic scope. We
return to the previous example,

let f ∼ 1 in let g ∼ f() in let f ∼ 2 in g()

16

Consider the innermost let block subexpression,

let f ∼ 2 in g()

Suppose we rename f to h in this subexpression, obtaining

let h ∼ 2 in g()

Is the new subexpression equivalent to the old? Certainly not. In the context
of the entire example, we will eventually substitute the definition of g – that
is, f() – in place of the invocation g(). The two subexpressions behave quite
differently. In the first subexpression, the substituted invocation of f is captured
by the immediately enclosing definition f ∼ 2. In the second subexpression, the
substituted invocation of f is not affected by the enclosing definition h ∼ 2, and
is resolved instead to the outermost definition f ∼ 1.

Would we want the two subexpressions to be equivalent? Probably yes. We
would prefer that an apparently arbitrary choice for the name of a local function
definition should not affect the external meaning of the program, by affecting
its behavior with respect to capture.

For now we could define this problem away using static semantics: we could
require that all names used in a program be distinct. Clearly this approach
would not scale to a real language . . .

17

