
CS411 Notes 3 – Induction and Recursion

A. Demers

5 Feb 2001

These notes present inductive techniques for defining sets and subsets, for defin-
ing functions over sets, and for proving that a property holds for all elements
of a set. They do not deal with simultaneous definitions of multiple sets, a
straightforward but tedious extension.

1 Formation Rules (Constructors)

1.1 Defining Sets

Here is some formal justification for the technique used to define the IMP syn-
tactic sets. The technique gives a collection FR of formation rules (or con-
structors). Intuitively, think of formation rules as uninterpreted functions that
combine small structures into larger ones. Thus, FR can be any (finite or infi-
nite) set. With each f ∈ FR we associate a nonnegative integer k, called the
arity of f , that specifies the number of substructures associated with f . We
represent an “application” of f as a tuple

〈f, c1, . . . , ck〉 where k = arity(f)

Intuitively, we would like the set defined by our formation rules to consist of
exactly those objects that can be constructed by finitely many applications of
the rules. This suggests a “formal” definition like

C = {〈f, c1, . . . , ck〉|f ∈ FR, k = arity(f), ci ∈ C}

Such a definition is problematic because of the recursive use of “C” inside the
definition of C.

A better approach is to rely on our understanding of definition over the natural
numbers. That is, we define a sequence Ci of intermediate sets, indexed by the

1



natural numbers, such that each set is an approximation to the set C that we
are trying to define. We then define C to be the “limit” – that is, the infinite
union – of all the Ci. Specifically,

C0 = {〈f〉|f ∈ FR, arity(f) = 0}

Ci+1 = Ci ∪ {〈f, c1, . . . , ck〉|f ∈ FR, arity(f) = k, c1, . . . ck ∈ Ci}

Here we are implicitly using the property that any set containing 0 and closed
under successor contains all the natural numbers, allowing us to conclude that
Ci is defined for every i. We then define C by

C =
⋃
i

Ci

This countably infinite union certainly exists and is well-defined.

1.2 Proving Properties by Structural Induction

When a set C is defined by formation rules, we can prove properties of its
elements by structural induction as follows. Suppose we are given some predicate
P (x). To prove

(∀c ∈ C) P (c)

it suffices to show, for each f ∈ FR,

P (c1) ∧ . . . ∧ P (ck) =⇒ P (< f, c1, . . . , ck〉) (1)

where as usual k = arity(f).

The soundness of this technique follows by ordinary mathematical induction.
First, from the proven implication 1 and and the definition of Ci we get

(∀c ∈ Ci.P (c)) =⇒ (∀c ∈ Ci+1.P (c))

Then, using ordinary mathematical induction we can establish

(∀i)(∀c ∈ Ci.P (c))

By definition of C, this is exactly

(∀c ∈ C)P (c)

as desired.

2



1.3 Defining Functions by Structural Recursion

Given a set C defined by formation rules, we would like exploit the structure
of those formation rules to help define a function mapping elements of C into
some arbitrary range set D. This turns out to be straightforward. For every
f ∈ FR, we define a function

[[f ]] : Dk → D

where k = arity(f). Then there is a unique function F satisfying

F (〈f, c1, . . . , ck〉) = [[f ]](F (c1), . . . , F (ck))

for all f ∈ FR and all ci ∈ C. This fact is most naturally proved by two separate
structural inductions: one to show the existence of at least one function F with
the desired properties, and another to show that all such functions must agree.
These are left as exercises.

The uniqueness of F follows from a property called “unique readability” of
constructed objects: for any c ∈ C, there is at most one rule f ∈ FR and one
sequence c1, . . . , ck such that c = 〈f, c1, . . . , ck〉. Totality of F follows because
there is always at least one such rule and sequence (since it is their existence
that witnesses the inclusion 〈f, c1, . . . , ck〉 in C).

The function [[f ]] was called Ff in lecture, rather disastrously, I thought.

2 Well Founded Induction

2.1 Well Founded Relations

A powerful generalization of the structural techniques presented above is based
on the notion of a well-founded relation.

A binary relation ≺ on a set A is called a well-founded relation if either of the
following two conditions holds:

1. There are no infinite descending chains; i.e.,

· · · ≺ ai ≺ · · · ≺ a1 ≺ a0 is not possible (2)

Note this implies ≺ is irreflexive, since if a ≺ a we could construct an
infinite descending chain consisting entirely of as.

3



2. Any nonempty Q ⊆ A has a minimal element; i.e.,

((Q ⊆ A) ∧ (Q 6= ∅)) =⇒ (∃m ∈ Q)(∀b ≺ m.b 6∈ Q) (3)

Since ≺ is not necessarily a total order, a minimal element is not necessary
a least element, and a set may contain numerous minimal elements.

The text includes a proof that the above two characterizations are equivalent.
One direction is immediate: if there is an infinite descending chain, that chain
itself is a nonempty subset of A without a minimal element. For the other
direction, assuming there exists a nonempty subset Q ⊆ A with no minimal
element, the text shows how to construct a countably infinite descending chain.

2.2 Proving Properties by WF Induction

Given a well-founded relation ≺ on set A, the principle of well-founded induction
is: to show a property P (a) holds for every a ∈ A it is enough to show

∀a ∈ A.([∀b ≺ a.P (b)] ⇒ P (a)) (4)

that is, if P is true of all predecessors of a then P is true of a.

This principle easy to prove from characterization 3 above. Suppose it fails;
that is, suppose implication 4 holds but P (a) is false for some a ∈ A. Let Q be
the set of all elements of A on which P is false. Since Q is assumed nonempty,
by 3 it must have a minimal element, which we shall call a′. Since a′ ∈ Q, it
follows that P (a′) is false. But by 3 we know that a′ has no predecessor in Q;
that is,

∀b ≺ a′.(b 6∈ Q)

If b 6∈ Q, it follows that P (b) is true. Thus we have

∀b ≺ a′.P (b)

By implication 4, which is assumed to hold, this implies P (a′) is true, a contra-
diction.

Well-founded induction is a generalization of the other techniques we have seen
up to now. In particular,

1. If we take ≺ to be the successor relation, n ≺ n+ 1, then the principle of
well-founded induction specializes to ordinary mathematical induction on
the nonnegative integers.

4



2. If we take ≺ to be the strictly-less relation <, then the principle of well-
founded induction specializes to course-of-values induction on the nonneg-
ative integers.

3. If we take ≺ to be the immediate-substructure relation on a set defined
by formation rules,

ci ≺ 〈f, c1, . . . , ci, . . . , ck〉

then the principle of well-founded induction specializes to the principle of
structural induction.

2.3 Defining Functions by WF recursion

Here is a technique for defining functions analogous to well-formed induction.

Suppose we are given a set A and a well-founded relation ≺ on A, and we want
to define a function F : A→ B where B is arbitrary. Such a function can be
defined by well-founded recursion as follows. Define a function F such that
F(a, h) ∈ B for all a inA and all functions h :≺−1 (a)→ B. (Note ≺−1 (a)
is the set of immediate predecessors of a.) Then there is a unique function
F : A→ B such that

∀a ∈ A.F (a) = F(a, F | ≺−1 (a))

This fact is proved in the text (p. 177).

It is worth pointing out one important way in which definition by well-founded
recursion differs from the structural recursion we have seen earlier: the absence
of unique readability. Recall, for a set defined by formation rules, unique read-
ability guarantees that for any a ∈ A there is a unique formation rule f and a
unique sequence a1, . . . , ak of elements of A such that

a = 〈f, a1, . . . , ak〉

It follows that F can be defined quite simply using this deconstruction. Unique
readability guarantees that the function

F(a, h) = [[f ]](h(a1), . . . , h(ak))

is well-defined for all a and h.

In general it is not trivial to come up with a single-valued function {(a, h)
without relying on unique readability.

5



For example, let A be finite sets of natural numbers, with the ≺ relation that
would be induced by building up the sets one element at a time:

a′ ≺ a ⇐⇒ a′ 6= a ∧ ∃n.(a′ ∪ {n} = a)

It is tempting to write a “definition” of the form

F(a′ ∪ {n}, h) = 3h(a′) + 2n

(the details of the function on the right hand side are arbitrary) but such a
definition implicitly requires unique readability to determine a′ unambiguously.
Without it, F may fail to be well-defined: Let h0 be the constant function 0,
and consider the two derivations

F({1, 2}, h0) = F({1} ∪ {2}) = 1 + 4 = 4

F({2, 1}, h0) = F({2} ∪ {1}) = 1 + 2 = 3

A little care is required.

3 Rules

3.1 Defining Subsets by Rules

Our structural operational semantics for IMP is presented as a collection of
inference or proof rules. Each rule contains free metavariables that must be
filled in (instantiated) consistently, using actual terms or values, before the
rule can be applied. Some rules have additional applicability constraints – for
example, “where n = n0 + n1” in rule L1.add of our long step semantics.

The proofs can be seen as defining a subset of a predefined universe set U . For
example, the large step semantics for IMP formally defines a 3-place relation, a
subset of Com× Σ× Σ.

Formally, we deal with the process of instantiating proof rules by the simple
expedient of doing all possible instantiations beforehand. An instantiated rule
consists of a pair 〈X, y〉, where X is a finite (possibly empty) subset of U and
y is an element of U . We begin with a set R of instantiated rules. An R-
derivation of element y is either a rule instance 〈∅, y〉 or a pair 〈{d1, . . . , dk}, y〉
where 〈{x1, . . . , xk}, y〉 is a rule instance and, for all i, di is an R-derivation of
xi. We write d `R y when d is an R-derivation of y.

There are actually two sets being defined by R in this process:

6



• a set of R-derivations, for which the definition is analogous to a definition
by formation rules, and

• a set of derivable elements of U (elements y that are the conclusion of
some R-derivation), which we denote by IR. This is discussed below.

Both are useful.

3.2 Induction on Derivations

Properties of operational semantics are sometimes provable by induction on
the structure of the program commands themselves. When this approach is
inadequate, the best approach to try next is generally induction on derivations.

We already have the necessary tools for this. We define a relation ≺ on R-
derivations as follows: If d is an R-derivation of the form 〈{d1, . . . , dk}, y〉, then
we let di ≺ d for all i. That is, di ≺ d iff di is an immediate subderivation of
d. It is easy to verify that ≺ is a well-founded relation. Thus, we can use it to
support well-founded induction on R-derivations.

3.3 Rule Induction

Given a set R of instantiated rules, the principle of Rule Induction enables us
to prove properties of the set IR of R-derivable elements. By now, the principle
should appear completely unsurprising:

Let IR be defined by rule instances R, and let P be a property. To prove
∀x ∈ IR.P (x) it suffices to prove

(∀x ∈ X.P (x)) =⇒ P (y) (5)

for every rule instance 〈X, y〉 in R such that X ⊆ IR.

A proof of the correctness Rule Induction appears in the text. The argument is
fairly straightforward. It relies on the following notion of an R-closed set.

Let Q be a subset of U . Q is R-closed if

∀〈X, y〉 ∈ R . (X ⊆ Q⇒ y ∈ Q)

In words, if Q contains all the premises of a rule instance, then in must contain
its conclusion as well.

7



It is not too difficult to show that IR is R-closed, and in fact

IR =
⋂
{Q|QisR− closed}

that is, IR is the smallest possible R-closed set.

Next, we can show that a proof of implication 5 is enough to guarantee that the
set

S = {x ∈ IR | P (x)}

is R-closed. Since IR is the intersection of all R-closed sets, it follows that
IR ⊆ S, as desired.

8


