
CS411 Notes 2 { IMP Small Step Semantics

A. Demers

30 Jan 2001

1 Large Step vs. Small Step Semantics

The operational semantics for IMP presented in the previous notes is a \large

step" or \natural" semantics. It has a notion of a \state," which for IMP

gives values to all program variables, and a notion of a \con�guration," which

for IMP is a pair consisting of a piece of program text to be executed and a

program state in which to begin execution. The semantics is presented as a

collection of proof rules, whose conclusions take the form

hcon�gurationi ! hstatei

Each such conclusion should be thought of as describing a complete program

execution, that is, relating an initial con�guration to the �nal state that results

from executing the program to completion. In particular, the \theorems" of the

system { that is, the conclusions of its proofs, or equivalently the ! relation it

de�nes { make no mention of the intermediate states in a computation.

Insensitivity to intermediate states is arguably a strength in that it makes the

semantics more \abstract." The semantics de�nes what result a program com-

putes, without constraining inessential details about how the result is computed.

Consider the (only reasonable) de�nition of program equivalence using large

step semantics:

(c0 � c1) , 8�; �0(hc0; �i�
0 , hc1; �i�

0)

What programs are equivalent under this de�nition?

All nonterminating programs are equivalent.

For any set S of program variables, a pair of programs c0 and c1 that as-

sign to no variables outside of S and that clear all the variables of S to

(say) 0 before terminating are equivalent, independent of the sequence of

intermediate states they produce.

1

There are circumstances under which the complete-execution de�nitions pro-

vided by large step semantics, and the resulting liberal notion of program equiv-

alence, can be undesirable. Perhaps the best-motivated one is concurrency.

Imagine extending IMP by adding a parallel-execution primitive

c ::= c0 == c1

with the intended meaning that c0 and c1 are to execute concurrently, possibly

interfering with one another through their e�ects on shared (global) variables

(recall all program variables in IMP are global).

What happens when we attempt to write a large step rule for this construct?

The conclusion naturally looks like

: : :

hc0 == c1; �i ! �0

What can the hypotheses be? A large step style suggests something of the form

: : : hc0; �00i ! �01 : : : hc1; �10i ! �11 : : :

hc0 == c1; �i ! �0

A bit of thought should convince you that this cannot work. The hypotheses

describe the behavior of complete executions of c0 and c1 run in isolation. The

�rst assignment to a global variable referenced by both c0 and c1 invalidates

the \isolation" assumption and renders the proofs of hypotheses useless for

describing the behavior of c0 == c1.

An alternative way to arrive at this pessimistic conclusion is to ask the question

Suppose c0 and c
0

0
are equivalent programs. Shouldn't I be able to

conclude, for any other program c1, that c0 == c1 and c
0

0
== c1 are

equivalent?

Certainly you'd like to be able to conclude that, and clearly you can't, since c0

and c0
0
could produce pretty arbitrarily di�erent sequences of intermediate states

during their execution, and thus could interfere with the concurrent execution

of c1 in pretty arbitrarily di�erent ways.

To summarize all this, we have a problem that { at least for some purposes {

our large step semantic de�nition is \too abstract."

One approach to dealing with this problem is not to give proof rules for the

complete-execution relation !, but instead to axiomatize a new one-step rela-

tion !1 that de�nes the individual atomic steps of program execution rather

2

than execution to completion. This \small step" approach is the one we shall

develop here.

The �rst thing to notice is that an individual \atomic step" does not take

execution to completion, and this has an e�ect on the type of the execution

relation. Unlike !, which relates con�gurations to �nal states or result values,

the one-step relation!1 relates con�gurations to other con�gurations { it relates

the \current" con�guration to the \next" con�guration in a computation. Final

results of computations are de�ned by identifying a subset of the con�gurations

that are \irreducible" in the sense of allowing no further computation steps. To

de�ne a complete computation, the !1 relation is applied repeatedly until an

irreducible con�guration is reached.

Con�gurations are de�ned almost exactly as they were for large step semantics:

An arithmetic expression con�guration is a pair ha; �i, where a 2 Aexp and

� 2 �. The con�guration is irreducible if a 2N.

A Boolean expression con�guration is a pair hb; �i, where b 2 Bexp and � 2 �.

The con�guration is irreducible if b 2 T.

A command con�guration is a pair hc; �i, where c 2 Com and � 2 �. As a

special case, we allow con�gurations of the form h; �i, in which the command

part is empty. A command con�guration is irreducible if its command part is

empty.

Actually, the de�nition of \irreducible" above is slightly fraudulent.

The true de�nition of irreducible is the set of con�gurations that

cannot occur on the left hand side of !1 in the conclusion of any

proof. Of course this de�nition depends on the particular set of

rules. After reading the small step rules presented below, you might

try to convince yourself that the two de�nitions are equivalent for

these rules.

Our small step semantics consists of proof rules de�ning the one-step relation

!1 between con�gurations. Results of complete program executions will be

de�ned by considering the (reexive and) transitive closure !�

1
and restricting

that relation to irreducible con�gurations on the right hand side. The large and

small step de�nitions of IMP are equivalent in the sense that

hc; �i ! �
0 , hc; �i !�

1
h; �0i

As we shall see, this fact is not at all trivial to prove.

3

2 A Small Step De�nition of IMP

Here is our complete small step semantics for IMP. This is still the original

IMP language as described in Chapter 2 of the text. In particular, expression

evaluation always terminates and has no side e�ects, and we have not (yet)

added any concurrency.

2.1 Arithmetic Expressions

Variable reference

hX;�i !1 hn; �i
where n = �(X) (S1.vref)

A variable reference evaluates in a single step to the contents of the state at the

variable's location.

Binary Terms The following rules apply for any binary operator �.

ha0; �i !1 ha00; �
0i

ha0�a1; �i !1 ha00�a1; �
0i

(S1.aopl)

Apply a single-step transition to the left operand if possible.

ha1; �i !1 ha01; �
0i

hn0�a1; �i !1 hn0�a01; �
0i

(S1.aopr)

If the left operand is irreducible, apply a single-step transition to the right

operand if possible.

hn0�n1; �i !1 hn; �i
where n = n0�n1 (S1.aopn)

If both terms are irreducible, produce the correct answer in a single step.

2.2 Boolean Expressions

Arithmetic Comparison The following rules apply for any comparison op-

erator � from among =, 6=, <, �, . . .

ha0; �i !1 ha00; �
0i

ha0�a1; �i !1 ha00�a1; �
0i

(S1.cmpl)

Apply a single-step transition to the left operand if possible.

ha1; �i !1 ha
0

1
; �

0i

hn0�a1; �i !1 hn0�a01; �
0i

(S1.cmpr)

4

If the left operand is irreducible, apply a single-step transition to the right

operand if possible.

hn0�n1; �i !1 htrue; �i
where n0�n1 is true (S1.cmpt)

hn0�n1; �i !1 hfalse; �i
where n0�n1 is false (S1.cmpf)

If both terms are irreducible, produce the correct answer in a single step.

Unary Boolean Expressions Logical negation is the only such expression

in IMP.
hb0; �i !1 hb00; �

0i

h:b0; �i !1 h:b00; �
0i

(S1.not)

Apply a single-step transition to the operand of a negation if possible.

h:true; �i !1 hfalse; �i
(S1.notf)

h:false; �i !1 htrue; �i
(S1.nott)

If the operand of a negation is irreducible, produce the correct result in a single

step.

Binary Boolean Expressions The following rules describe left-to-right, non-

strict evaluation of binary Boolean expressions. In particular, if the left operand

of ^ evaluates to false, or the left operand of _ evaluates to true, then the

correct answer is produced in a single step without evaluating the right operand.

The possibility of skipping evaluation of right operands has no e�ect on the result

of Boolean expression evaluation in IMP, because expression evaluation in IMP

is guaranteed to terminate. So the worst thing that happens is we evaluate a

right subexpression and immediately discard its value, e�ectively wasting the

time we spent computing it. We can never compute an incorrect answer, nor

can we fail to compute an answer. This situation will change later, when we

add side-e�ects and nontermination to expression evaluation.

hb0; �i !1 hb00; �
0i

hb0�b1; �i !1 hb00�b1; �
0i

(S1.bopl)

Apply a single-step transition to the left operand if possible.

hfalse^ b1; �i !1 hfalse; �i
(S1.andf)

5

If the left operand of ^ is false, produce the answer false in a single step

independent of the right operand.

htrue^ b1; �i !1 hb1; �i
(S1.andt)

If the left operand of ^ is true, discard it. The �nal answer will be the result

of evaluating the right operand.

htrue_ b1; �i !1 htrue; �i
(S1.ort)

If the left operand of _ is true, produce the answer true in a single step

independent of the right operand.

hfalse_ b1; �i !1 hb1; �i
(S1.orf)

If the left operand of _ is false, discard it. The �nal answer will be the result

of evaluating the right operand.

2.3 Commands

Null Command

hskip; �i !1 h; �i
(S1.skip)

As usual, skip has no e�ect; it reduces to a con�guration with an empty com-

mand part.

Assignment
ha0; �i !1 ha00; �

0i

hX a0; �i !1 hX a
0

0
; �0i

(S1.asgn)

Apply a single-step transition to the assignment right-hand-side expression if

possible.

hX n; �i !1 h; �[n=X]i
(S1.asgn0)

If the assignment right-hand-side expression is irreducible, update the state

appropriately in a single step.

Sequencing These rules actually require careful thought.

hc0; �i !1 hc00; �
0i

hc0; c1; �i !1 hc00; c1; �
0i

(S1.seql)

6

Execute a single step of the �rst command c0

hc0; �i !1 h; �0i

hc0; c1; �i !1 hc1; �0i
(S1.seqr)

If the �rst command c0 completes in a single step, discard it and continue using

the updated state �
0. The �nal state will be the the one resulting from the

second command c1.

Conditionals

hb0; �i !1 hb00; �
0i

hif b0 then c0 else c1; �i !1 hif b00 then c0 else c1; �
0i

(S1.if)

Apply a single-step transition to the condition if possible.

hif true then c0 else c1; �i !1 hc0; �i
(S1.ift)

Execution of a conditional with a condition value of true is equivalent to exe-

cuting the then part c0.

hif false then c0 else c1; �i !1 hc1; �i
(S1.i�)

Execution of a conditional with a condition value of false is equivalent to exe-

cuting the else part c1.

Iteration Just as in the large step semantics, the rule for iteration is the heavy

one. Here we use only a single rule, allowing most of the real work to be done

by the conditional rules given above.

hwhile b0 do c0; �i !1 hif b0 then c0; while b0 do c0 else skip; �i
(S1.wh)

A loop is equivalent to the version that has been \unrolled" once.

This is the while rule, and while is the only source of nontermination. There-

fore, just as in our previous large step semantics, the potential for an \in�nite

proof tree" must lie in this rule.

Recall in the large step semantics, the potential for an in�nite proof tree arose

because one of the while rules had a hypothesis that was no smaller than the

conclusion. Intuitively, this rule could be used in�nitely many times without

making progress.

In the current small step semantics, the behavior is slightly di�erent. There is

only one while rule, and it has no hypotheses. Here the growth to an in�nite

7

proof tree happens because the conclusion of the rule is an instance of !1 in

which a complete copy of the left-hand-ide command is embedded in the right-

hand-side command.

I should mention that the while rule is the only one can lead to in�nite proof

trees, in either the small step or large step semantics for IMP. But that is

an artifact of the simplicity of the language. Other constructs such as function

de�nitions would introduce similar behavior.

8

