
CS411 Untyped Lambda Calculus with Exercises

A. Demers

10 Apr { due 17 Apr

In these notes we give an overview of the untyped lambda calculus. We relate

it to a subset of our example language with recursive type declarations. We

argue that the untyped lambda calculus and the recursively typed programming

language subset have equivalent expressive power | both are Turing complete.

A few homework exercises are interspersed.

1 Untyped Lambda Calculus

Consider the recursive type declaration

U � �X:fun(X)X

Intuitively this de�nes a type U that is equal to the space of functions from U

to U | a \model for the untyped lambda calculus," If you don't yet know what

that means, you're about to learn some elementary things about it.

Terms in the untyped lambda calculus are de�ned by the following simple gram-

mar:

e ::= x j �x:e j e1(e2)

That is all there is to this minimalist language. There are no \base types" like

int or bool, no constants, and no typing rules. Every expression is a function,

and all you can do with a function is apply it or pass it as an argument.

Semantics is usually presented as the following three rules.

�x:e ! �y:[y=x]e

provided no capture occurs
(alpha)

1

The alpha rule allows bound variables to be renamed provided no capture occurs

as a result of the renaming.

(�x:e1)(e2) ! [e2=x]e1

provided no capture occurs
(beta)

The beta rule is essentially a \copy rule" as we discussed earlier in the course.

Note that repeated uses of the alpha rule may be required to eliminate the

possibility of capture and make the beta rule applicable.

e = (�x:e(x))

x not free in e
(eta)

Intuitively the eta rule says that the entire meaning of an expression is its

behavior as a function | if you take an expression and explicitly turn it into a

function, you do not change its meaning.

The lambda calculus is usually interpreted using lazy evaluation; but the above

rules can form the basis of either a lazy or an eager semantics, determined by the

order in which redexes { subexpressions to which the beta rule can be applied

{ are selected and reduced.

Except for termination, all reduction orders in the untyped lambda calculus are

equivalent. That is, the system has the

Church-Rosser Property:

((e1 !� e2) ^ ((e1 !� e3)))

(9e4)((e2 !� e4) ^ ((e3 !� e4))

Consequently, all terminating reduction sequences must produce the same value.

Leftmost-outermost reduction gives lazy evaluation semantics. It is equivalent

to an unrestricted copy rule | reduction of beta-redexes in any arbitrary order

| and has the property that it terminates if there is any way to reduce the

expression to normal form.

In contrast, any scheme that requires the argument expression of an application

to be fully reduced before beta reducing the application will give eager semantics,

sometimes diverging when lazy semantics would converge.

None of this is expected to be obvious; in fact it is rather deep and not at all

trivial to prove.

2

Even though the untyped lambda calculus has no scalar types and no recursive

function declaration capability, it is Turing complete | any computable function

can be de�ned within it. To prove this it is suÆcient to show how to simulate the

natural numbers, Booleans and conditional execution, and how to do recursive

function de�nitions, since it is clear that these features are enough to enable

you to write a Turing machine simulation program. We'll do this below.

2 Translating Lambda Terms into Recursively

Typed Terms.

The grammar of the untyped lambda calculus is a (small) subset of the gram-

mar of our example language. Consequently, every lambda calculus term is an

expression in our language. Of course, it might not be a well typed expression.

It turns out that with the single recursive type U introduced above we can give

a translation of any untyped lambda calculus term into an equivalent well typed

term in our language. The translation uses only lambda, variables, application,

mu, abs and rep. In particular there are no let bindings, no use of assignment,

and no types other than the recursive function type U given above. It is de�ned

by induction on lambda terms as follows:

T [[x]] = x

T [[e1(e2)]] = (repU (T [[e1]]))(T [[e2]])

T [[�x:e]] = absU (�x : U:T [[e]])

Proving computational equivalence of untyped lambda terms and their transla-

tions is a substantial exercise, and we won't go through the details here. How-

ever, you should convince yourself of the following partial result, which is prov-

able by induction on evaluation derivations in the programming language:

Proposition: Suppose

hT [[e1]]; �; �i ! hv2; �i

then there exists an untyped lambda term e2 such that

e1 !
�

�� e2 and T [[e2]] = v2

tu

3

The translation of untyped lambda calculus into well typed terms depends criti-

cally on recursive types. To see this, recall that in earlier exercises we considered

versions of our language without loops, assignable variables, recursive functions

or recursive types. For well typed terms in such a language, a strong normaliza-

tion theorem holds | one can show by induction on type derivations that every

evaluation terminates. When recursive types are introduced, however, strong

normalization fails. Consider the untyped lambda term

(�x:x(x))(�x:x(x))

or its translated typed version

(repU (E))(E)

where E � absU (�x : U:(repU (x))(x))

A single beta reduction on the untyped term yields

(�x:x(x))(�x:x(x)) ! [(�x:x(x))=x](x(x))

! (�x:x(x))(�x:x(x))

The term reduces nontrivially to itself, leading to an in�nite nonterminating

reduction sequence. It is not diÆcult to see that this is the only reduction

sequence possible.

Exercise 1. Show that the typed version of this term has the same nontermi-

nating behavior. tu

The conclusion to be drawn here is that recursion fundamentally increases the

expressiveness of the type system. With a single recursive type U , we can mimic

the untyped lambda calculus. We are about to develop the promised result that

the untyped lambda calculus is Turing complete; so in some sense recursion

makes the type system as expressive as possible.

3 Lambda Calculus is Turing Complete.

As promised, we now show that the untyped lambda calculus is Turing com-

plete. We do this by de�ning an encoding function E[[�]] that maps numbers,

Booleans and conditional execution, and recursive function de�nitions into un-

typed lambda terms.

4

3.1 Numbers.

The following construction is sometimes called the \Church numerals" after the

mathematician A. Church. The basic idea is to translate a natural number n

to a function of two arguments, which applies its �rst argument to its second n

times. That is,

E[[n]] = �f:�x:fn(x)

For any particular n this is trivial:

E[[0]] = �f:�x:x

E[[1]] = �f:�x:f(x)

E[[2]] = �f:�x:f(f(x))

� � �

Given these encodings of the numbers, how might we encode the successor

function? It's pretty straightforward:

E[[succ]] = �n:(�f:�x:f((n(f))(x)))

It is easy to see that a function that applies f to x exactly n + 1 times can be

constructed from a function that applies f to x exactly n times (that is, from

the encoding of n) by a direct de�nition using no recursion.

Exercise 2. Give a nonrecursive de�nition for the encoding of the function

add, which computes the sum of two numbers. The relation

(((E[[add]])(E[[n1]]))(E[[n2]]) = E[[n]]

where n = (n1 + n2)

should hold. tu

3.2 Tuples.

How far can we get without conditionals and recursive function de�nitions?

Since we're trying to show that we can de�ne conditionals and recursive func-

tions with the mechanism we have so far, the answer to this question is at best

subjective. But here is a (perhaps excessively involved, but instructive) way to

encode the predecessor function using an encoding of ordered pairs.

5

Suppose we have (the encoding of) a number n. We can use it to apply any

function we want to any argument we want, n times. Could that enable us to

apply a function n�1 times? Believe it or not, yes, by the following clever trick.

Assume we have a way to construct and decompose ordered pairs. We can take

any function g, and extend it to a function G on ordered pairs such that

G(hu; vi) = hv; g(v)i

Note this is not just applying g to each element of the ordered pair; rather, we

are using the ordered pair to \remember" the value of the argument of g. Now

the sequence

hx; xi; G(hx; xi); : : : Gi(hx; xi); : : :

is just

hx; xi; : : : hgi�1(x); gi(x)i; : : :

and the �rst component of

Gn(hx; xi)

gives us the predecessor of n.

To de�ne ordered pairs, we �rst de�ne projection functions

proj
1
= �x:�y:x proj

2
= �x:�y:y

Next, we arrange to represent an ordered pair hu; vi by something that applies

a projection function to u and v:

mkpr = �x:�y:(�r:(r(u))(v))

Clearly

((mkpr(u))(v))(proj
1
) = u and ((mkpr(u))(v))(proj

2
) = v

So we are able to construct and select components of ordered pairs.

6

Exercise 3. Complete the development of the predecessor function encoding.

First de�ne functions fst and snd that extract the �rst and second components

of an ordered pair. Then de�ne a function extend that extends functions to

ordered pairs as described above; it should satisfy

(extend(g))(mkpr(u; v)) = mkpr(v; g(v))

Finally, make use of your new collection of \macro de�nitions" to give a non-

recursive de�nition of the predecessor function. By the way, we conventionally

de�ne the predecessor of zero to be zero; you'll �nd this works out conveniently.

tu

Exercise 4. Now that we have shown how to de�ne the predecessor func-

tion, give a nonrecursive de�nition for the encoding of the function sub, which

computes the di�erence between two numbers. Your de�nition should satisfy

(((E[[sub]])(E[[n1]]))(E[[n2]]) = E[[n]]

where n = (n1 � n2)

if n1 > n2, and

(((E[[sub]])(E[[n1]]))(E[[n2]]) = E[[0]]

if n1 � n2. tu

We haven't quite �nished with the natural numbers | we need predicates <,

=, . . . , which compare numbers. Of course, we can't de�ne those until we've

shown how to encode Boolean values.

3.3 Booleans and Conditionals.

Having understood the ordered pair encoding used above, you should have little

trouble with Booleans and conditionals. We simply encode the two truth values

as the binary projection functions; that is,

E[[true]] = �x:�y:x

E[[false]] = �x:�y:y

With this interpretation it is easy to encode the usual Boolean operators.

E[[not]] = �u:(�x:�y:(u(y))(x))

E[[or]] = �u:�v:(�x:�y:(u(x))((v(x))(y)))

7

It is easy (if tedious) to verify that these de�nitions have the correct behavior

for all possible combinations of true and false arguments u and v.

It is tempting to encode if expressions simply by

E[[if e1 then e2 else e3]] = ((E[[e1]])(E[[e2]]))(E[[e3]])

That is, E[[e1]] is the encoding of a Boolean, and thus always returns a binary

projection function. If that projection function is E[[true]], then the result is

e2; otherwise the result is e3. In fact this intuitive approach works correctly in

the lambda calculus with lazy evaluation. It fails if eager evaluation is used,

sometimes diverging when it should not. For example, suppose e2 converges

and e3 diverges. Clearly E[[e3]] must also diverge, or the encoding E would be

incorrect. The expression

if true then e2 else e3

should converge, since e2 converges. But the expression

((E[[true]])(E[[e2]]))(E[[e3]])

diverges under eager evaluation rules, since evaluation of the argument E[[e3]]

diverges. Fortunately, this problem is not diÆcult to �x.

Exercise 5. Give an encoding of conditional expressions that works with eager

evaluation rules. Argue convincingly that your encoding is correct. tu

As we remarked above, we haven't quite �nished with the natural numbers |

we need predicates to compare them. With the machinery we have built up this

is easy.

Exercise 6. Give the encoding of a function leq, which compares two numbers.

It should satisfy

(E[[leq]](E[[n1]]))(E[[n2]])) = E[[b]]

where b = (n1 � n2)

With the Boolean operations above this gives us all the necessary predicates on

natural numbers. tu

8

3.4 Recursion.

At last we get to general recursive functions. Assume there is an explicit con-

struct for recursive function expressions

e ::= (recfun f � lambda x dot e)

where the recursive function name f may (and presumably does) occur free in

e. Assume, as discussed in lecture, the meaning of a recfun expression is the

least �xed point of the corresponding functional

F � lambda f dot (lambda x dot e)

Finally, assume inductively that we can encode F | it contains fewer instances

of recfun than the original expression did. Thus, our encoding for the recursive

function expression is

E[[(recfun f � lambda x dot e)]] =

Y (E[[lambda f dot (lambda x dot e]]))

and our remaining task is to give an untyped lambda expression Y that computes

a least �xed point.

To get some intuition for this, recall a lambda expression we presented above

(�x:(x(x)))(�x:(x(x)))

which reduces nontrivially to itself. By modifying the body of the individual

lambda terms in this expression we can make it reduce nontrivially to some

function of itself. Since we seek a �xed point of F , the obvious modi�cation is

to introduce an application of F . That is,

(�x:F (x(x)))(�x:F (x(x))) ! F ((�x:F (x(x)))(�x:F (x(x))))

This suggests that the lambda expression

Y � �f:(�x:f(x(x)))(�x:f(x(x)))

should act as a �xed point operator. (It is perhaps not obvious why it should

compute a least �xed point; we'll return to this issue later).

Here is a situation we have encountered before. In the lazy lambda calculus,

the above de�nition of Y works as desired. If eager evaluation is used, then

naturally Y (F) diverges for any F .

9

Exercise 7. Consider the following recfun expression with no recursion:

recfun f � lambda x dot x

What is the corresponding functional F? Show that (Y (F))(zero) converges (to

the correct answer) using lazy evaluation| that is, give a terminating reduction

sequence for this expression. tu

Fortunately, it is not too diÆcult to come up with a �xed point function Ye

that works with eager evaluation. The eta rule given above asserts that any

expression e is equal to �x:(e(x)), (at least as far as its behavior as a function is

concerned). But the two expressions are not equivalent for the purposes of eager

evaluation| one of them (�x:(e(x))) can always be passed as an argument, even

if the other (e) is divergent. We can exploit this behavior to derive Ye.

To �ll in the details, recall we used

Y (F) = F (Y (F))

to de�ne what it means for Y (F) to be a �xed point of F . Suppose we modify

this de�nition slightly by applying the eta rule to the right hand side, to obtain

Ye(F) = �z:((F (Ye(F)))(z))

as a proposed �xed point de�nition for Ye. An expression satisfying this equation

can be derived by the same heuristic we used to derive Y above | slightly

modifying the body of our archetypal divergent expression

(�x:x(x))(�x:x(x))

Speci�cally, let

Ye � �f:((�x:�z:(f(x(x))(z)))(�x:�z:(f(x(x))(z))))

A single outermost beta reduction on Ye(F) yields

Ye(F) ! ((�x:�z:(F (x(x))(z)))(�x:�z:(F (x(x))(z))))

! �z:(F ((�x:�z:(F (x(x))(z)))(�x:�z:(F (x(x))(z)))))(z)

� �z:(F (Ye(F)))(z)

as required. Note that z is not free in

(�x:�z:(F (x(x))(z))

so no capture occurs in the above substitutions, as the beta rule requires.

Exercise 8. Repeat Exercise 7 above using Ye with eager evaluation (where

a term of the form �x:e is irreducible) rather than Y with lazy evaluation. tu

10

