
CS411 Notes 15 Recursive Types I

A. Demers

9 Apr 2001

1 Motivation

Our little language has grown fairly rich. It includes records, union types,

higher-order functions as �rst-class entities, subtyping, etc. But there remains

a fundamental missing capability | recursion in types; that is, the ability for a

type signature to refer to itself.

A simple example illustrates how essential this feature is. Suppose we want to

de�ne a type L of list structures similar to Lisp S-expressions. A �rst attempt

might look something like this:

rectype L � sum(nil : prod(); cons : prod(car : L; cdr : L))

This declaration is isomorphic to what you'd write in just about any modern

programming language. We can't write it in the language fragment we've de-

veloped up to now, because we have no way to introduce a type name L and

then refer to it from within the type expression de�ning L. This recursive use

of a new type name is absolutely essential here. A critical de�ning property

of a \list" is that it can contain substructures that are also lists. Without the

ability to express this, our language is fundamentally crippled.

Recall that any attempt to eliminate recursion from a function de�nition by

\in-line expansion" resulted in an intractible in�nite function body. To give an

operational semantics for recursive functions, we simulated the in-line expan-

sion incrementally, as substitutions associated with evaluation rules for function

application.

Similarly, any attempt to eliminate recursion from a type de�nition for lists

by in-line expansion would generate in�nite type expressions. So we take a

similar approach | we unwind recursive type de�nitions incrementally, perform

1

one-level substitutions as required in rules for \abstraction" constructors and

\representation" selectors.

The process is a bit delicate. We'll be extending the type expressions in a

fundamental way: adding type names, the possibility of free type variables and

capture, and in general making it nontrivial to guarantee \well-formedness" or

\consistency" of type assignments, con�gurations, etc.

All that said, the details are surprisingly simple.

2 Syntax

Type Variables Recursive type declarations will require type names, a new

syntactic set. We use

X;X1; X2; Y; Z; : : :

for type names.

Types

� ::= X j (mu X dot �)

The �rst new form of type expression is just a reference to a type name. A mu

type expression denotes a recursive type. The name X may appear free in the

body � of the mu expression; intuitively, it is bound to the type being de�ned.

Expressions

e ::= abs� (e) j rep� (e)

These are new expression forms for dealing with values of recursive type. The

abs� and rep
�
constructs are used to move between the \abstract" recursive

type and its \representation" | basically, to control the contexts in which is

is possible to examine the internal structure of a value. Some examples below

should clarify this. In an expression of either kind, the subscript/annotation �

must be a mu type expression. This is enforced by the typing rules below.

2

Values

v ::= abs� (v)

As with sum types, a value is produced by applying a constructor (in this case

abs) to a value.

3 Typing Rules

There are two typing rules for recursive types. They illustrate the intimate

connection between the type

mu X dot �

which can be thought of as an \abstract" recursive type, and its \unrolled"

version

[mu X dot �=X]�

which can said to reveal the type's \representation." The abs and rep con-

structs convert between these two views of a recursive type.

� ` e : [mu X dot �=X]�

� ` absmu X dot � (e) : mu X dot �
(T15.1)

� ` e : mu X dot �

� ` rep
mu X dot �

(e) : [mu X dot �=X]�
(T15.2)

We are actually skating on rather thin ice here. Since we have introduced type

names, there are issues of free names in type expressions, capture of type names

when substitutions are performed by the above rules, equivalence of recursive

types, etc. We shall deal with these issues later. For now, just keep in mind

that there are unanswered questions we'll need to address.

4 Evaluation Rules

We introduced only two new expression constructs | abs and rep | and

consequently we have two new evaluation rules.

he; �; �i ! hv; �0
i

habsmu X dot � (e); �; �i ! habsmu X dot � (v); �
0
i

(E15.3)

3

A well typed abs expression (which by the �rst typing rule above must consist

of an abs constructor applied to a well typed subexpression of the unwound

representation type) is reduced to a value by reducing its subexpression to a

value and then embedding the result in the abs constructor.

he; �; �i ! habsmu X dot � (v); �
0
i

hrep
mu X dot �

(e); �; �i ! hv; �0
i

(E15.4)

This rule says rep is a left inverse of abs. To compute with a value of a recursive

type, apply rep to map it to a value of the representation type.

5 Example

Here is an extended example, using a recursive type to simulate the natural

numbers. Let

NN � mu X dot sum(z : prod(); s : X)

A natural number is either zero (the `z` case) or the successor of another natural

number (the `s' case). The representation as discussed above is the result of

unrolling the recursive type de�nition by substitution:

NNR � [NN=X](sum(z : prod(); s : X)

= sum(z : prod(); s : NN)

The abs constructor can be thought of as mapping from NNR to NN ; and the

rep constructor can be thought of as mapping from NN to NNR

A few well typed expressions:

Zero : NN

Zero � absNN (injNNR(z � hi))

To construct a value of a recursive type, it must be possible to construct a value

of the represenation type without requiring another value of the recursive type

| i.e., there must be a \base case." That is why most uses of recursive types

involve sum types Here inj
NNR

using the z variant has the required behavior.

One : NN

One � absNN (inj(s � Zero)

4

This uses the other case of inj
NNR

(the s case). This requires a preexisting NN

value, but we already have Zero at hand.

Suc : fun(NN)NN

Suc � lambda n : NN dotabsNN (inj(s � n)))

Pred : fun(NN)NN

Pred � lambda n : NN dot case rep
NN

(n)(z) n; s) s)

These are simple functions that can be de�ned without recursion. To get a more

interesting function like addition we need recursion. As in some of our earlier

examples, can \cheat" and elicit recursive behavior by assignment to a function

valued variable:

Plus : fun(NN)fun(NN)NN

Plus � let p � newvar(: : :) in

p lambda x : NN dot lambda y : NN dot

case rep
NN

(x)(z) y; s) Suc(p(s; y)))

Later we'll show how to get recursive behavior by de�ning a \least �xed point"

operator as a function of a recursive type, without either assignment or explicit

recursion in the language itself.

6 Preview

As we pointed out above, there are a few issues involving free type variables

and capture that we have to address before we can argue that our type rules

are sound. That's for the next set of notes . . .

5

