
CS411 Notes 14 Disjoint Unions

A. Demers

9 Apr 2001

Here we add sum (disjoint union) types to our language. In lecture we relied

on subtyping rules for sum constructs. Here we present an alternative in which

sum types are provided with tagged \injection" constructors. This is more in

the style of the recursive type rules, which will be presented in the next set of

notes.

1 Syntax

Types

� ::= sum(: : : xi : �i : : :)

Informally a sum type is a tagged union | each value is taken from a �nite

(multi-) set of constituent types, with an associated tag indicating the con-

stituent type associated with the value. The constituent types of a sum are not

constrained to be distinct. For example,

sum(a : prod(); b : prod())

is a legal sum type.

Expressions

e ::= inj� (x � e
0)

j case e0 (: : : xi) ei : : :)

1

The injection constructors inj� convert a value to a sum type from one of its

constituent types. Let

� � sum(a : prod(); b : prod(); c : int)

Then some expression of type � are

inj
�
(a � hi) inj

�
(b � hi) inj

�
(c � 17)

Note the �rst two of these expressions are distinct | they inject the same value

hi into the sum type, but with two di�erent tags a and b.

A case expression analyzes a value of a sum type based on the value's tag. For

example, for an expression e of the above type � one could write

case e (a) 0; b) 1; c) (c+ 2))

Within the subexpression associated with a tag, the tag name itself is bound to

the value inside e. Thus, if e is inj� (c � 17), then the value of the above case

expression is (17+2) or 19.

Values

v ::= inj� (x � v
0)

As usual, whenever we add a new type we must extend our notion of a value

(canonical term). In this case it is straightforward | the values of sum type

are exactly the inj constructors applied to values of the constituent types.

2 Typing Rules

Here are the new typing rules for sum types.

� ` e : �
0

� ` inj� (x � e) : �

where � � sum(: : : x : � 0
: : :)

(T14.1)

An inj constructor applied to a well typed expression of a constituent type is a

well typed expression of the sum type.

� ` e : sum(: : : xi : �i : : :)

: : :

(� � fxi : �ig) ` ei : �

: : :

� `: case e (: : :xi) ei : : :) : �

(T14.2)

2

This rule analyzes an expression of a sum type according to the tag (hence the

type) of the current value. Each case expression ei must be well typed (and

have the same type �) when the tag identi�er xi is assumed to have the i
t
h

constituent type.

3 Evaluation Rules

Finally, here are the evaluation rules.

he; �; �i ! hv; �
0
i

hinj
�
(x � e); �; �i ! hinj

�
(x � v; �

0
i

(E14.3)

An inj constructor applied to a well typed expression of a constituent type

reduces to the value of the constituent expression tagged with the appropriate

selector name.

he; �; �i ! hinj� (xi � vi; �
00
i

hei; (�� fxi � vig); �
00

hcase e (: : :xi) ei : : :); �; �i ! hvi; �
0
i

(E14.4)

To reduce a case expression, �rst evaluate the object expression e (the result

value will necessarily have the form inj� (xi � vi)); then select the arm of the

case expression identi�ed by xi and evaluate it with xi bound to the value vi.

4 Soundness

The soundness proof outlined in Notes 12 can be extended to sum types without

any surprises.

3

