
CS411 Notes 13 Subtypes

A. Demers

13 Mar 2001

Here we introduce the notion of a subtype. Using the language fragment from

Notes 10, we present rules for deriving subtype relations. We show how to

modify the typing and evaluation rules to allow a value of a subtype to be used

whenever a value of a supertype is expected. Finally, we discuss how the type

soundness arguments of the previous Notes could be changed to incorporate the

subtype relation.

1 Subtyping

We are interested in cases where one type can be considered a subset or subtype

of another. We'll de�ne a relation � on types such that if

� � �
0

holds then a value of type � may be used in any context where a value of type

�
0 is expected.

The motivation that � reects \usable in place of" implies that � should be

reexive:

� � �

transitive:

((�1 � �2) ^ (�2 � �3))) (�1 � �3)

1

antisymmetric:

((�1 � �2) ^ (�2 � �1))) (�2 = �1)

The last of these properties is perhaps slightly questionable; but we choose to

say that two types �1 and �2 that are extensionally indistinguishable { have

exactly the same members { are the same type.

These three properties are the de�nition of a reexive partial order. It is inter-

esting that � is a partial order, though we won't make technical use of this fact

anytime soon.

As we have already seen, reexivity and transitivity are easily represented by

proof rules. We give them as our �rst two subtyping rules.

` � � � (SbT.1)

` �1 � �2

` �2 � �3

` �1 � �3

(SbT.2)

These rules apply in general, to all types. Next we develop subtype rules for

speci�c types. Recall our set of types:

� ::= int j bool j string

j var(�)

j prod(: : : xi : �i : : :)

j fun(�1)�2

The �rst few constructors yield nothing interesting: since there are no mean-

ingful ways to mix integer, boolean and string values, there are no � relations

among these types.

We shall defer discussion of var(�) until later.

For now, let's discuss product types. First consider the type

� = prod(: : : xi : �i : : :)

Every value of this type is a tuple with named components (\�elds"),

v = h : : : xi � vi : : : i

2

and the only way to use such a value is to select one of its �elds. Now consider

�
0 = prod(: : : xi : �

0

i : : :)

and a value

v
0 = h : : : xi � v

0

i : : : i

Selecting �eld xi from a v produces the �i value vi; selecting the identically

named �eld xi from v
0value produces a tau

0

i value v
0

i. Suppose

(8i) �i � �
0

i

then in every case the values selected from v and v
0 are in types � and �

0 related

by �, and we conclude that the product types � and �
0 are similarly related by

�. Thus we have the rule

: : : ` �i � �
0

i : : :

` prod(: : : xi : �i : : :) � ` prod(: : : xi : �
0

i : : :)
(SbT.3)

Now consider a product type like

prod(x : int; y : int)

and a value

v = h x � 1; y � 2 i

from that type. As above, the value is a tagged tuple, from which �elds may be

selected by name. The only way to use such a value is to select one of its �elds,

and the only �elds that may be selected are the ones named in the type, in this

case `x' and `y'. Now consider the type

prod(x : int; y : int; z : int)

and the tuple

v
0 = h x � 1; y � 2; z � 3 i

This tuple has all the �elds of the previous tuple, together with an additional

�eld z. It should be clear that every legal selection from v is legal for v0 as well

3

(and in fact yields identical results). Thus we have the counterintuitive behavior

that adding an additional �eld to a product type actually generates a subtype

{ it makes the type \smaller" under the � relation. The rule describing this

behavior is

` prod(: : : xi : �i : : : ; y : �y) � ` prod(: : : xi : �i : : :) (SbT.4)

Together with transitivity, these two rules are suÆcient. That is, they allow us

to prove arbitrary subtyping relations of the form

` prod(: : : xi : �i : : : ; : : : yj : �
y
j : : :) � prod(: : : xi : �

0

i : : :)

where �i � �
0

i

as required.

We can apply a similar analysis to function types. Consider

f : fun(�1)�2 and f
0 : fun(� 0

1
)� 0

2

What conditions will make f usable in place of f 0 in all contexts? First consider

the result type. An invocation of f will produce a result of type �2; the invoker

(which we assume is correct for f 0) expects a value of type � 0

2
. Thus, the result

will be usable if

�2 � �
0

2

holds. Now consider the parameter types. For f to be usable in place of f 0,

we require that every argument value that might be passed to f
0 can legally be

passed to f . The argument values that might be passed to f
0 are the values of

�
0

1
, while the values that can legally be passed to f are those of �1. Thus, we

require

�
0

1
� �1

This antimonotonic behavior in the parameter type is similar to the order-

reversal we noted for product types, for a good reason. You can think of record

�eld selection as a function de�ned on the set of �eld names. Making the set of

�eld names larger makes the product type smaller in the � ordering. Similarly,

making the parameter type �1 larger makes the function type smaller in the �

ordering. The resulting rule is

` � 0

1
� �1

` �2 � �
0

2

` fun(�1)�2 � mathbffun(� 0

1
)� 0

2

(SbT.5)

4

Function types are said to be covariant in the result position { increasing the

result type increases the function type under �. They are contravariant in the

parameter position { increasing the parameter type causes the function type to

decrease under �.

Now we return to considering var types, which we skipped earlier. Consider the

types

var(�) and var(� 0)

Are these two types ordered by �? Equivalently, is the var(�) type constructor

covariant or contravariant in �? We claim it can be neither. Let � � �
0 be

distinct types, so there is some value v
0 in �

0 but not in � . Let x have type

var(�), and let x0 have type var(� 0).

Can x be used in place of x0? No, because of the assignments

x
0
 v

0 (legal) and x v
0 (illegal)

Can x
0 be used in place of x? Again no, because of the reference

(x0
") : � 0

which could produce v
0, even though the invoker (which expects to be using x

rather than x
0) is only prepared for values in � .

Thus when � increases or decreases, the corresponding var(�) types are un-

related. So var(�) is neither covariant nor contravariant in � ; its behavior is

sometimes called non-variant or invariant. Consequently, there is no subtyping

rule for var(�).

2 Typing Rules

A simple (and in some ways intuitively appealing) approach to incorporating

subtyping into our type checking rules would be to add a single rule

` � � �
0

` e : �

` e : � 0

This rule asserts that an expression e can be typed with any supertype of its

\ordinary" type. The problem with this approach is it sacri�ces unique typing

5

{ in general it allows an expression to be typed in many ways, sometimes even

in�nitely many ways. Our evaluation rules rely heavily on unique typing of

expressions, so this is not a change that should be made lightly. In fact we shall

not make it at all.

We could instead make major changes in our typing rules, in e�ect taking ac-

count of the � relation in every one of our rules. For example, for each operator

� there could be a rule like

� ` e1 : �
0

1
` � 0

1
� �1

� ` e2 : �
0

2
` � 0

2
� �2

� ` (e1�e2) : �3

where � is �1 � �2 ! �3

This approach quickly leads to diÆculties, however. Consider the obvious at-

tempt at a subtype-aware typing rule for conditionals:

: : : � ` ei : �i : : :

` �1 � bool

` �2 � �

�3 � �

� ` (if e1 then e2 else e3) : �

While this rule is sound, the result type � appears nowhere in the original

expression. Thus � may be chosen arbitrarily during rule instantiation, allowing

us to prove a conditional's result type to be any supertype of the types �2 and

tau3 derived for the arms. In short, we have lost the unique typing property.

We could regain unique typing if we could invent some way to identify the

\least" supertype of �2 and tau3. However, this is technically a bit challenging,

and we won't pursue it yet.

An alternative would be to extend the expression syntax to allow an optional

result type annotation on conditionals. Several other constructs { e.g. let blocks

{ would require similar type annotation syntax.

We can avoid ether of these by noting that the language already has type an-

notations at the single most critical point: the parameter speci�cation of a

lambda expression:

lambda x : � dot e

6

A single additional type rule allows an argument to be any subtype of the

corresponding parameter:

� ` e1 : fun(�
0)�

� ` e2 : �2 ` �2 � �
0

� ` e1(e2) : �

(SbTC.1)

Again, the critical point about this rule is to allow an application where the

argument type (�2) is a subtype of the parameter type (� 0).

Given this rule, we can use a sleazy trick to introduce type annotations at

essentially arbitrary points in a program. Observe for any type � 0 we can write

a typed identity function

I� 0 = lambda x : � 0
dot x I� 0 : fun(� 0)� 0

Now with no additional rules other than (SbTC.1) above, we have

((� ` e : �) ^ (` � � �
0))) (� ` (I� 0)(e) : � 0)

That is, I� 0 may be used as a \typecast" to coerce the value of e to any supertype

�
0.

We have given up something with this approach: there is no automatic inference

of subtypes, everything has to be given explicitly through insertion of typed

identity functions. However, this language has few syntactic creature comforts

anyway . . . so we simply \put up with" the inconvenience of having to specify

type annotations in places where they should be \obvious" to a clever compiler,

in exchange for the convenience of needing only the single additional type rule

(SbTC.1) to exploit the subtyping relation.

3 Evaluation Rules

Amusingly, we can incorporate subtyping with no changes at all in the evaluation

rules. Perhaps this should not be too surprising. After all, the subtyping rules

were motivated by a notion that every value of a subtype should be usable in

a context where the supertype is expected. The notion of \usable" was quite

conservative { basically, an oblivious user of the supertype must be able to

manipulate values of the subtype with no change in behavior. The requirement

of no change in behavior leads naturally to no change in the evalutation rules.

7

4 Soundness

Little change is required to incorporate subtyping into the type soundness ar-

gument outlined in Notes 10. Roughly, every place the theorem used to say

something like

e has type �

we change it to say something more like

e has type �
0 where �

0 � �

instead. Through the magic of cut-and-paste, we reproduce the argument here

with the few changes required by subtyping:

The type assignment � is

� = f: : : xi : �i : : :g

The environment � is

� = f: : : xi � bi : : :g

where bi is a bindable (closed) value as in Notes 10.

We say � is consistent with � if

(dom(�) = dom(�))^

(((x � �) 2 �) ^ ((x � b) 2 �))) ((fg ` b : � 0) ^ (` � 0 � �))

that is, � and � de�ne the same set of names in a type-consistent way { the

type of the value bound to x in the environment is always a subtype of the type

speci�ed for x in the type assignment.

The store � is

� = f: : : a�i � vi : : :g

where vi is a storable value as in Notes 10.

We say � is proper if

((a� � v) 2 �)) ((fg ` v : � 0) ^ (� 0
� �))

8

that is, the type of a value in the store is a subtype of the type associated with

its typed storage address.

We say � supports expression e if

AC(e) � dom(�)

where AC(e) is the set of all address constants that occur anywhere in e.

Finally, the soundness theorem becomes

Theorem (soundness of type rules): Suppose e, �, � and � satisfy

� ` e : �

� is consistent with �

� is proper

� supports e

and suppose

he; �; �i !
�

1
he

0
; �

0
i

Then (subject reduction):

� ` e0 : � 0 where ` � 0 � �

�
0 is proper

�
0 supports e0

and (progress):

(e0 2 V) _ (9e00; �00)(he0; �; �0i !1 he
00
; �

00i)

tu

9

