
CS411 Notes 12 Type Soundness

A. Demers

13 Mar 2001

Here we argue for the soundness of the typing rules of Notes 10-11. Before

proceeding, be sure to have read \Translating LS to SS". Based on the discus-

sion there, we shall assume the existence of small step evaluation rules for the

language of Notes 10-11. Since these rules are not explicitly written down, we

can't explicitly write down a type soundness proof based on them. However, we

can say quite a bit about the structure of such a proof.

A natural way to state formally that a set of typing rules is sound might go

something like

If the typing rules assign type � to a program expression e, and the

evaluation rules reduce e to v, then the typing rules assign � to v.

Roughly, \the value of an expression is in its type."

It is easy to convince yourself that such a condition is necessary { to assert

that expression e has type � when the \value" of e is not in � would clearly be

unacceptable. But would the proposed theorem constitute \soundness" of the

type system? Possibly not. There are at least a couple of things that might go

wrong:

Inconsistent type rules. One potential problem is that the typing rules

themselves might be inconsistent { in worst case, for every expression e it might

be possible to deduce

fg ` e : �

for every type � , making the proposed theorem statement identically true and,

consequently, not very compelling as a statement of soundness of the type sys-

tem.

1



This particular problem does not arise for us. Our typing rules have a unique

typing property:

(� ` (e : � ) ^ � ` (e : � 0)) ) (� = �
0)

That is, for any expression and any type environment, there is at most one type

that can be deduced for the expression.

Incomplete evaluation A second potential problem is incomplete evalu-

ation. Our programming language includes potentially nonterminating con-

structs. Thus, we could not hope to strengthen the proposed theorem to any-

thing like

If the typing rules assign type � to a program expression e, then

there exists a value v such that the evaluation rules reduce e to v,

and the typing rules assign � to v.

since many expressions e legitimately fail to reduce to values. However, it is not

obvious that failure to reduce an expression always reects legitimate nonter-

mination. Instead, a reduction sequence might simply \get stuck," reaching a

con�guration to which no evaluation rule applies. Our own evaluation rules ex-

hibit just this behavior if evaluation ever attempts to read from an uninitialized

location in the store.

In principle, it might be possible to reach a con�guration from which the \obvi-

ous" next step would intuitively be type-erroneous. If in this case the evaluation

rules simply \get stuck" { fail to take the fatal next step { the proposed type

soundness theorem still holds, albeit vacuously.

It is nontrivial to capture formally the notion of \getting stuck" for large step

rules; so for the remainder of this discussion we will assume we have a set of

small step evaluation rules. Refer to the \Translating LS to SS" handout for

some justi�cation for this.

Small step rules produce a �nal answer (if evaluation terminates) and all inter-

mediate con�gurations. In principle we can make statements about all co�gura-

tions visited during an evaluation, and we can insist that the evaluation either

completes or visits in�nitely many con�gurations. Thus, our type soundness

theorem should include a subject reduction (or \type preservation") condition

like

(fg ` e : � ) ^ (he; �; �i !�

1
he0; �0i) ) fg ` e

0 : �

2



and a \progress" condition like

(fg ` e : � ) ^ (he; �; �i !�

1
he0; �0i)

) (e0 2 V ) _ (9e00; �00)(he0; �; �0i !1 he00; �00i)

Together, these conditions say an evaluation either terminates correctly or

goes through an in�nite sequence of well-typed con�gurations. This is a much

stronger notion of type soundness than our original proposed theorem, and is

the one we'll pursue.

To make a completely formal statement of this theorem, and to facilitate a

proof by induction on derivations, we need to characterize the \well-typed"

con�gurations.

The interesting objects in our con�gurations are expressions e, type assignments

�, environments �, and stores �. A well-typed con�guration is one in which all

these components are consistent with one another, as we'll describe now.

The type assignment � is

� = f: : : xi : �i : : :g

The environment � is

� = f: : : xi � bi : : :g

where bi is a bindable (closed) value as in Notes 10.

We say � is consistent with � if

(dom(�) = dom(�))^

(((x � � ) 2 �) ^ ((x � b) 2 �))) (fg ` b : � )

that is, � and � de�ne the same set of names in a type-consistent way.

The store � is

� = f: : : a�i � vi : : :g

where vi is a storable value as in Notes 10.

We say � is proper if

((a� � v) 2 �) ) (fg ` v : � )

3



that is, the types of values in the store agree with the types of their locations.

We say � supports expression e if

AC(e) � dom(�)

where AC(e) is the set of all address constants that occur anywhere in e. AC(e)

is easily de�ned by induction on expressions.

With all this machinery, we are �nally able to state the soundness theorem for

our rules:

Theorem (soundness of type rules): Suppose e, �, � and � satisfy

� ` e : �

� is consistent with �

� is proper

� supports e

and suppose

he; �; �i !�

1
he0; �0i

Then (subject reduction):

� ` e
0 : �

�
0 is proper

�
0 supports e0

and (progress):

(e0 2 V ) _ (9e00; �00)(he0; �; �0i !1 he
00
; �

00i)

tu

A proof would proceed by induction on derivations in the small step semantics.

Of course the above statement is the \induction hypothesis" version. For pro-

grams, it is applied with

e is closed � = ; � = ; � = ;

4



which can easily be seen to satisfy the consistency conditions of the theorem.

The only remaining requirement is that

� (= ;) supports e i.e. AC(e) = ;

This requirement is slightly questionable. It illustrates that address constants

are an artifact of evaluation, usable during evaluation to construct closed ex-

pressions, but not allowed in initial program expressions. An alternative would

be to replace the emtpy store by one that has been initialized to an appropriate

default value at each location in AC(e), but we won't pursue that here.

5


