
CS411 Notes 10 – Types III

A. Demers

2 Mar 2001

We continue the definition begun in the previous notes by presenting evaluation
rules.

1 Evaluation Rules

1.1 Preliminaries

As for previous language fragments, the judgements of our evaluation rules will
have the form

〈(π ` e : tau), φ, σ〉 → 〈v, σ′〉

The expression to be evaluated is a well-typed program expression – that is, a
derivation according to the typing rules of the previous Notes.

The environment φ is a finite set of bindings

φ = {. . . xi ∼ bi . . .}

where bi is a “bindable value,” to be defined later.

The stores σ and σ′ are likewise finite sets

σ = {. . . xi ∼ vi . . .}

where vi is a “(storable) value,” also to be defined later.

Clearly we’ll want to enforce some consistency properties among the type as-
signments, expressions, environments and stores in our judgements. First, every
free name of e should be defined in π and φ:

dom(π) = dom(φ) ⊇ FV (e)

1

In addition, the types of names in the type assignment and environment should
agree:

(((x : τ) ∈ π) ∧ ((x ∼ b) ∈ φ)) ⇒ (π ` b : τ)

The store should be defined on all addresses that appear explicitly in e, and no
location in the store should become undefined:

dom(σ′) ⊇ dom(σ) ⊇ A(e)

where A(e) is the set of all explicit address constants aτ that appear anywhere
in e (an inductive definition of A(e) is left as an exercise). Finally, the store
itself should be properly typed:

((aτ ∼ v) ∈ σ) ⇒ (π ` v : τ)

That is, if aτ is a type τ address, then the value stored there should have type
τ .

Of course, all this must be considered rather informal, as it relies on an intuitive
notion of what it means for a value to “have a type.” In particular, we haven’t
yet said what values are, and how judgements like

π ` b : τ and π ` v : τ

should be interpreted for (bindable and storable) values.

1.2 What is a value?

The question “what is a value,” was easy to answer when computing over a
finite set of simple types. But now we are working with an infinite set of types,
with a lot of interesting structure.

Intuitively, we want a value to be a “finished” expression – one on which we
cannot perform any further computation. It should not depend on the environ-
ment, because it exists in the store independent of any particular environment;
and it should not depend on other values in the store, since we would like the
freedom to update individual storage locations independently.

Clearly, if an expression has free names, its evaluation might depend on the
environment; So something like “17” should be a value, while something like “x”
should not. Similarly, if an expression looks up the value at an address (uses the

2

↑ operator), its evaluation might depend on the store; so something like “aτ”
(which represents an address in the store) might be a value, but something like
“aτ ↑ (representing the contents of the store at address aτ) should not be a
value.

These goals are easy to achieve for our basic types – it is clear that a (string,
bool or int) constant should be usable as a value, and in fact that’s what we’ve
been doing all along.

It is also fairly clear how to make values of a product type – they are just tuples
composed (inductively) of values of the component types.

It may be less obvious what the values of a function type should be. Intuitively,
a function is a rule for computing a (result value and final store) from an (ar-
gument value and initial store). Given our goal that a value should not depend
on the environment, we shall insist that a function value be closed (i.e. have
no free variables). But that is the only constraint we shall impose. Since any
closed lambda expression can be interpreted as a rule for computing values, we
will allow any closed lambda expression to be considered a value.

With these goals in mind, we can define storable values inductively as

v ∈ V ⊂ Exp (storable values)

v ::= n | t | s | aτ

| 〈 . . . xi ∼ vi . . . 〉
| (lambda x : τ dot e) where FV (v) = ∅

That is, the storable values are constants, tuples built up out of storable values,
and closed lambda expressions.

For now, we shall let the bindable values be the same as the storable ones:

b ∈ B = V (bindable values)

Later we shall expand the set of bindable values.

The evaluation rules below maintain the invariant that the environment (resp.
store) contain only bindable (resp. storable) values. Such values are closed,
independent of the current environment. This property will enable us to achieve
static scope behavior.

1.3 Eager Static Rules

Here are eager-evaluation, static scope rules.

3

Constants

〈n, φ, σ〉 → 〈n, σ〉 (E10.1)

〈t, φ, σ〉 → 〈t, σ〉 (E10.2)

〈s, φ, σ〉 → 〈s, σ〉 (E10.3)

〈aτ , φ, σ〉 → 〈aτ , σ〉 (E10.4)

Constants are elements of V and reduce to themselves.

Operators These rules mimic our earlier systems.

〈e1, φ, σ〉 → 〈v1, σ
′〉

〈ψe1, φ, σ〉 → 〈v, σ′〉
where v = ψv1 (E10.5)

〈e1, φ, σ〉 → 〈v1, σ1〉
〈e2, φ, σ1〉 → 〈v2, σ2〉
〈e1θe2, φ, σ〉 → 〈v, σ2〉

where v = v1θv2 (E10.6)

Control Structures Again, there are no surprises here.

〈e1, φ, σ〉 → 〈v1, σ1〉
〈e2, φ, σ1〉 → 〈v2, σ2〉
〈(e1; e2), φ, σ〉 → 〈v2, σ2〉

(E10.7)

〈e1, φ, σ〉 → 〈true, σ1〉
〈e2, φ, σ1〉 → 〈v2, σ

′〉
〈(if e1 then e2 else e3), φ, σ〉 → 〈v2, σ

′〉
(E10.8)

〈e1, φ, σ〉 → 〈false, σ1〉
〈e3, φ, σ1〉 → 〈v3, σ

′〉
〈(if e1 then e2 else e3), φ, σ〉 → 〈v3, σ

′〉
(E10.9)

〈e1, φ, σ → 〈 false, σ′〉
〈(while e1 do e2), φ, σ〉 → 〈 false, σ′〉

(E10.10)

〈e1, φ, σ → 〈 true, σ1〉
〈e2, φ, σ1〉 → 〈v, σ2〉

〈(while e1 do e2), φ, σ2〉 → 〈 false, σ′〉
〈(while e1 do e2), φ, σ〉 → 〈 false, σ′〉

(E10.11)

4

Assignable Variables These rules are interesting for the treatment of ad-
dress valued constant expressions and explicit memory allocation.

〈e1, φ, σ〉 → 〈v1, σ1〉
〈newvar(e1), φ, σ〉 → 〈aτ , σ′〉

(E10.12)

with the rather complex condition

aτ = next(τ, σ1), σ′ = σ1 ⊕ {aτ ∼ v1}

That is, if aτ is the least uninitialized address of type τ in σ, executing newvar
will allocate and initialize it.

〈e1, φ, σ〉 → 〈aτ , σ1〉
〈e2, φ, σ1〉 → 〈v2, σ2〉

〈e1 ← e2, φ, σ〉 → 〈v2, σ ⊕ {aτ ∼ v2}〉
(E10.13)

An assignment could refer to an “unallocated” address. This would update
the store in a type-safe (though perhaps not program-methodologically-correct)
fashion.

〈e1, φ, σ〉 → 〈aτ , σ1〉
〈e1 ↑, φ, σ〉 → 〈v, σ1〉

where aτ ∼ v ∈ σ1 (E10.14)

This rule does not apply unless the location aτ is defined in σ. In effect, a
program attempting to read an uninitialized variable does not reduce; it gets
“stuck.”

Let Bindings The treatment of let blocks is eager.

· · · 〈ei, φ, σi−1〉 → 〈vi, σi〉 · · ·
〈e0, (φ⊕ {. . . xi ∼ vi . . .}), σn〉 → 〈v, σ′〉
〈let . . . xi ∼ ei . . . in e0), φ, σ〉 → 〈v, σ′〉

(E10.15)

The bound expressions ei are fully (eagerly) evaluated, and the results entered
into the environment for the hypothesis.

〈x, φ, σ〉 → 〈v, σ〉 where(x ∼ v) ∈ φ (E10.16)

Since let bindings are done eagerly, looking up the value of a name involves no
computation, hence an empty hypothesis set.

5

Products Cartesian products (aka records) are new in this language fragment,
but should not hold any surprises. Their evaluation is eager.

· · · 〈ei, φ, σi−1〉 → 〈vi, σi〉 · · ·
〈(〈. . . xi ∼ ei . . .〉), φ, σ〉 → 〈(〈. . . xi ∼ vi . . .〉), σn〉

(E10.17)

〈e, φ, σ〉 → 〈(〈. . . xi ∼ vi . . .〉), σ′〉
〈e.xi, φ, σ〉 → 〈vi, σ′〉

(E10.18)

Functions Evaluating a lambda expression – that is, producing an equivalent
closed lambda expression or function value – is the most subtle part of these
rules.

〈(lambda x : τ dot e), φ, σ〉 → 〈(lambda x : τ dot e), φ, σ〉
if FV (e) ⊆ {x}

(E10.19)

A closed lambda expression is already a function value; it evaluates to itself.

〈(lambda x : τ dot (let y ∼ v in e)), φ, σ〉 → 〈v′, σ′〉
〈(lambda x : τ dot e), φ, σ → 〈v′, σ′〉

where y is the least element of FV (e)− {x}
and (y ∼ v) ∈ φ

(E10.20)

To evaluate a lambda expression that is not closed, we generate a subgoal in
which the function body is enclosed in a let block that binds one of the function’s
free variables to it value from the current environment. Since the value from
the environment is closed, the new function body has one fewer free variables
than the original one had. This eventually leads to a subgoal in which the
lambda expression to be evaluated has no free variables at all, so the previous
rule applies.

〈e1, φ, σ〉 → 〈(lambda x : τ dot e3), σ1〉
〈e2, φ, σ1〉 → 〈v2, σ2〉

〈e3, (φ⊕ {x ∼ v2}), σ2〉 → 〈v, σ′〉
〈e1(e2), φ, σ〉 → 〈v, σ′〉

(E10.21)

To evaluate an application, first reduce the function part to a function value – a
closed lambda expression. Then reduce the argument to its value v2. Finally,
evaluate the function body using the one-element environment {x ∼ v2}. Since
the function value was closed, the function body can have at most the parameter
name x free, so its evaluation in this environment should succeed.

6

