
CS411 Notes 1: IMP and Large Step Operational

Semantics

A. Demers

23-25 Jan 2001

This material is primarily from Ch. 2 of the text. We present an imperative

language called IMP; we give a formal de�nition of its syntax and the �rst of

several operational semantic de�nitions.

1 The Syntax of IMP

Here we present the syntax of an imperative programming language called IMP.

IMP is about the simplest imperative language you can imagine. It has a �xed

(possibly in�nite) set of integer-valued global variables with assignments, condi-

tional commands and while-loops, and that's about all. In particular, it lacks

procedures, functions, variable declarations, type declarations, any many other

creature comforts you would expect to �nd in a \real" programming language.

Despite its simplicity, IMP is Turing-complete, as we shall see later on.

The syntax of IMP will be de�ned by simultaneous de�nition of the following

six syntactic sets:

N the (positive and negative) integers.

T the (Boolean) truth values, true and false.

Loc the set of locations of program variables.

Aexp the set of arithmetic expressions.

Bexp the set of Boolean expressions.

Com the set of commands.

We assume the �rst three syntactic sets { numbers, Booleans and locations

{ are already fully speci�ed, and the reader's intuitive understanding will be

suÆcient. There are just couple of points we should note:

1

� Technically these are syntactic sets, and we probably should not be iden-

tifying N with the integers. In any real programming language there are

multiple literals denoting the same number, e.g. `1', `01', `001', To

simplify the exposition, we shall initially de�ne this possibility away { we

shall assume elements of N are canonicalized so there is exactly one way

to write each (signed) integer.

� The name Loc suggests numeric memory addresses, but we can use any

set that can uniquely identify memory locations; it will be most convenient

to assume Loc is an in�nite set of program variable names.

For the remaining three syntactic sets { the arithmetic and Boolean expressions,

and the program commands (or statements) { we give formation rules describing

how to build up elements of each syntactic set from smaller elements of the same

set, or from elements of the other syntactic sets. In these rules (as well as in

the operational semantics to follow) we use simple notational conventions to

associate variables with the sets they range over.

N contains n; n0
; n

00
; n0; n1; : : :

T contains t; t0; t00; t0; t1; : : :.

Loc the set of locations of program variables.

Aexp contains a; a0
; a

00
; a0; a1; : : :

Bexp contains b; b0; b00; b0; b1; : : :

Com contains c; c0; c00; c0; c1; : : :

Using these conventions, the formation rules for IMP are given by the following

BNF description:

a ::= n j X j a0 + a1 j a0 � a1 j a0 � a1

b ::= true j false j a0 = a1 j a0 � a1 j :b0 j b0 _ b1 j b0 ^ b1

c ::= skip j X a0 j c0; c1 j if b0 then c0 else c1 j while b0 do c0

These rules have the usual interpretation for BNF de�nitions (inductive de�-

nition of the syntactic sets). That is, they de�ne the least sets (under subset

ordering, �) containing the basic sets and closed under the formation rules.

2 Large Step Operational Semantics

Here we give the �rst of several operational semantic de�nitions we shall discuss

for IMP.

2

Our �rst de�nition is called a \Large Step" operational semantics. The basic

approach is �rst to de�ne formally the notion of a program execution con�gu-

ration { intuitively, a pair consisting of some program text to be executed and

a memory state from which execution is to begin { and then to give a set of

logical inference rules that de�ne a reduction relation ! between such con�gu-

rations and (�nal) memory states. A con�guration is related by ! to the �nal

state that would result from a terminating program execution starting from that

initial con�guration.

We begin by de�ning the states: the set � of (memory) states consists of the

total functions � : Loc!N. Such a function maps each location to a number;

intuitively, �(X) gives the value (or contents) of location X in state �.

We next de�ne a command con�guration as a pair hc; �i, where c 2 Com and

� 2 �.

We lied just a bit in the �rst paragraph of this section. There really need to be

three di�erent (but related) notions of a con�guration. IMP programs do not

just execute commands; they also evaluate arithmetic and Boolean expressions.

Thus, we require the additional de�nitions:

An arithmetic expression con�guration is a pair ha; �i, where a 2 Aexp and

� 2 �.

A Boolean expression con�guration is a pair hb; �i, where b 2 Bexp and � 2 �.

Technically, there are also three di�erent reduction relations; but since no con-

fusion should result we overload the symbol! to represent all three of them:

ha; �i ! n

holds when evaluation of a starting in state � produces the number n 2N;

hb; �i ! t

holds when evaluation of b starting in state � produces the Boolean value t 2 T;

and

hc; �i ! �
0

holds when execution of c starting in state � terminates in state �0.

Below we give inference rules to de�ne each of these relations.

2.1 Arithmetic Expression Rules

These are the rules for evaluating arithmetic expressions. As noted above, each

rule has a conclusion of the form

ha; �i ! n

3

which you should interpret to mean expression a in state � evaluates to n.

Constants

hn; �i ! n
(L1.n)

A number (a numeric literal) evaluates to itself independent of the state.

Variables

hX;�i ! �(X)
(L1.vref)

A variable reference evaluates to the contents of the variable's location in the

memory state.

Binary Operations

ha0; �i ! n0 ha1; �i ! n1

ha0 + a1; �i ! n
where n = n0 + n1 (L1.add)

The condition \where n = n0 + n1" should be interpreted to mean that the

rule is applicable only if n0; n1 and n are instantiated by numbers whose values

satisfy the stated equality. We can interpret the rule to mean that if the two

subterms of a sum evaluate respectively to n0 and n1, then the sum evaluates

to n0 + n1.

ha0; �i ! n0 ha1; �i ! n1

ha0 � a1; �i ! n
where n = n0 � n1 (L1.sub)

This is the analogous rule for subtraction. Finally,

ha0; �i ! n0 ha1; �i ! n1

ha0 � a1; �i ! n
where n = n0 � n1 (L1.mul)

is the analogous rule for multiplication.

2.2 Boolean Expression Rules

Evaluation rules for Boolean expressions follow a similar pattern.

Boolean Constants

htrue; �i ! true
(L1.t)

hfalse; �i ! false
(L1.f)

Boolean constants evaluate to themselves without reference to the state.

4

Atomic Propositions

ha0; �i ! n0 ha1; �i ! n1

ha0 = a1; �i ! true
where n0 = n1 (L1.eqt)

ha0; �i ! n0 ha1; �i ! n1

ha0 = a1; �i ! false
where n0 6= n1 (L1.eqf)

ha0; �i ! n0 ha1; �i ! n1

ha0 � a1; �i ! true
where n0 � n1 (L1.leqt)

ha0; �i ! n0 ha1; �i ! n1

ha0 � a1; �i ! false
where n0 > n1 (L1.leqf)

These rules are all straightforward. Note the conclusions are Boolean expression

reduction relations, while the hypotheses require proving arithmetic expression

reduction relations.

Unary Operations
hb; �i ! true

h:b; �i ! false
(L1.nott)

hb; �i ! false

h:b; �i ! true
(L1.notf)

These are the obvious rules relating the value of a unary Boolean expression to

the value of its negation.

Binary Operations

hb0; �i ! t0 hb1; �i ! t1

hb0 ^ b1; �i ! t
where t0 ^ t1 � t (L1.and)

hb0; �i ! t0 hb1; �i ! t1

hb0 _ b1; �i ! t
where t0 _ t1 � t (L1.or)

These rules relate the value of a binary Boolean expression to the values of its

subexpressions. Note most \real" programming languages would not evaluate

both subexpressions unnecessarily { that is, if the left operand of an _ reduced

to true or the left operand of an ^ reduced to false, then the right operand

would not be evaluated at all. This technique is sometimes called \short-circuit

evaluation," as opposed to the \strict evaluation" performed by our inference

rules. In the current version of IMP this optimization has no e�ect on the

result of program execution. The value of a Boolean expression, and the result

of executing a program containing Boolean expressions, is the same whether

5

strict or short-circuit evaluation is used. Later we will discuss variants of IMP

in which expression evaluation can modify the store or can fail to terminate. In

such variants, the distinction between strict and non-strict evaluation will be

signi�cant.

2.3 Command Execution Rules

Before we present rules for command execution, we need some additional no-

tation. Recall the state is a function mapping locations of program variables

to their values. Intuitively, assigning a new value to a program variable should

have the e�ect of changing the state function at a single argument point (the

location of the a�ected variable). We express this by the following:

�[m=X](Y) =

�
m

�(Y)

if Y = X

o.w.

That is, �[m=X] is a new state function that is identical to � except on the

argument X, where it returns m rather than �(X).

Null Commands

hskip; �i ! �
(L1.skip)

The skip command has no e�ect on the state.

Assignments
ha; �i ! n

hX a; �i ! �[n=X]
(L1.asgn)

An assignment updates the state at the speci�ed location to the value of the

right-hand-side expression.

Sequential Composition

hc0; �i ! �
00

hc1; �
00
i ! �

0

hc0; c1; �i ! �0
(L1.seq)

The execution of the sequential composition c0; c1 can be understood as the

consecutive execution of c0 and c1 where the intermediate state �00 (the result

of executing c0) appears explicitly in the instantiated rule.

6

Conditionals
hb; �i ! true hc0; �i ! �

0

hif b then c0 elsec1; �i ! �0
(L1.ift)

Execution of a conditional whose test evaluates to true is equivalent to execution

of the then clause, c0.

hb; �i ! false hc1; �i ! �
0

hif b then c0 else c1; �i ! �0
(L1.i�)

Execution of a conditional whose test evaluates to false is equivalent to execu-

tion of the else clause, c1.

Loops The loop rules are intuitively straightforward.

hb; �i ! false

hwhile b do c; �i ! �
(L1.whf)

A loop whose condition evaluates to false terminates immediately with no e�ect

on the store.

hb; �i ! true hc; �i ! �
00

hwhile b do c; �
00
i ! �

0

hwhile b do c; �i ! �0
(L1.wht)

Execution of a loop whose condition evaluates to true is equivalent to \un-

rolling" the loop once { that is, executing the loop body c and then re-executing

the entire loop starting from the new state �00 in which the �rst execution of c

terminated.

One aspect of this rule is new, and has important consequences. Note that the

entire while- loop

while b do c

from the rule's conclusion appears in the third hypothesis. You should verify

that this is new behavior in the following sense: in every other rule, the program

pieces appearing in hypothesis con�gurations are subparts of the program piece

in the conclusion con�guration, and thus are strictly smaller.

Without while loops and the while rule, you could exploit this diminishing-

size property to compute an upper bound on the size of any possible proof of a

given execution relation. That is, you could come up with an easy-to-compute

function f such that no proof tree for hc; �i ! �
0 could possibly require more

than f(jcj) rule instances. In principle, you could write a computer program to

enumerate all proof trees up to that size and check each tree against the desired

conclusion hc; �i ! �
0. Such a program would check termination, which is not

possible for a Turing-complete language. Of course, without while commands

7

IMP is not Turing-complete, and all loop-free IMP do terminate, so there is

no contradiction in any of this.

With while loops, there is no recursive bound on the size of the proof tree

required to prove a terminating program execution. Any algorithm to construct

a proof tree would be guaranteed, on at least some nonterminating programs

and inputs, to loop forever, trying to construct an \in�nite proof tree."

8

