
CS411 Final Examination

(Open Notes)

16 May 2001 12:00-2:30

1 Subtypes

Consider extending IMPX with subrange types: the constructor

� ::= [m :: n]

denotes the type consisting of all the integers between m and n, inclusive. Note

n and m are numbers, not expressions { that is, they are compile time constants.

a) (8 points) Give subtyping rules that relate the subrange types to one an-

other and to the int type. tu

Solution a)

` [m; n] � int

m > n

` [m; n] � [m0
; n

0]

(m0 � m) ^ (n � n
0)

` [m; n] � [m0
; n

0]

Note none of these use the logical rules in any signi�cant way { the power is all

in comparing values of m and n. tu

Now consider extending IMPX with restricted var types:

� ::= readonly var � j writeonly var �

with the obvious meanings that a readonly variable cannot be assigned to, and

a writeonly variable cannot be read. (writeonly var types appear in some

languages as \result" parameters).
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b) (12 points) Give subtyping rules for readonly and writeonly types, and

explain why they are sound. Your rules should cover all the interesting cases:

readonly var � ? var �

writeonly var � ? var �

readonly var � ? readonly var �
0

writeonly var � ? writeonly var �
0

where � � �
0. tu

Solution b)

` var � � xxxonly var �

(Fewer operations/methods implies larger in the subtype ordering).

` � � �
0

` readonly var � � readonly var �
0

That is, readonly var � is covariant in � .

` �
0 � �

` writeonly var � � writeonly var �
0

That is, writeonly var � is contravariant in � . tu

IMPX does not have array types, but it does have var and function types, and

it very recently acquired subrange types. We propose to model the Java array

type by var-returning functions; that is,

array n of � becomes fun(i : [1::n]) var �

(Yes, I know Java uses 0-origin arrays; don't worry about this. Java also has

a runtime mechanism to query array subscript bounds; don't worry about this

either.)

Subscripts will be replaced by function application, so the translation from Java

expressions using arrays to IMPX expressions will look like

T [[a[i]]] = (T [[a]])(i)

Below we call this representation the \IMPX translation of array types."
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c) (10 points) Java uses the array subtyping rule

` � � �
0

` array n of � � array n of �
0

Show by example that this rule is not sound. (In Java implementations this

problem is addressed by a runtime check). Is this rule derivable in the IMPX

translation? Explain your answer. tu

Solution c) Suppose � � �
0; and let t0 be an expression that is in �

0 but not

in � . Then the program

a : array n of �  new : : : ;

a
0 : array n of �

0  new : : : ;

: : :

a
0  a; (legal by unsound subtype rule)

a
0[i]  t

0; (legal by types of a; t0)

a[i]; (returns a value not in �

The rule is not derivable in the translation, because the translation uses var �

in place of � , and the types var � and var �
0 are unrelated. tu

d) (10 points) Is the rule

n > m

` array n of � � array m of �

sound? Is it derivable in the IMPX translation? Explain your answer. tu

Solution d) The rule is sound and derivable in the translation as follows:

From

n > m

we can deduce

` [1::m] � [1::n]

whence

` fun([1::n]) var � � fun([1::m]) var �

by contravariance of function types. This is the desired ordering of the array

types in translation. tu
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e) (10 points) Consider adding Java types

readonly array n of � and writeonly array n of �

What are the natural IMPX translations of these types, and what are the sub-

typing relations among them and ordinary array types? Explain your answers.

tu

Solution e) The idea here is to make the array element type readonly or

writeonly. Thus, the translations are

T [[readonly array n of � ]] = fun(i : [1::n]) readonly var �

T [[writeonly array n of � ]] = fun(i : [1::n]) writeonly var �

Since the var � occurs in a covariant position in the function types, the trans-

lated array types vary in the same direction that readonly and writeonly

variables do {

array n of � � readonly array n of �

array n of � � writeonly array n of �

and for � � �
0

readonly array n of � � readonly array n of �
0

writeonly array n of �
0 � writeonly array n of �

tu

2 Compiling Recursive Functions

This problem refers to the compile function K[[e]]� described in lecture and the

handout of 1 May. That function compiled a language with function values and

nonrecursive let bindings, but no explicit recursive functions.

Consider adding support for explicitly recursive function de�nitions. The added

syntax is

e ::= rec f(x : � )� 0 f e1 g in e2

This is almost equivalent to

let f � lambda x : � dot e1 in e2

except that the de�nition is recursive, so the function name f can appear free

in the function body e1 and will be bound to the function being de�ned.
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a) (40 points): Show how to add support for recursive function de�nitions, by

adding/changing cases in the de�nition of K[[e]]�. Explain your answer.

Note the type system does not distinguish between recursive and nonrecursive

functions; so for example the following program is legal:

let f � newvar fun(int)int in

let fn � lambda x : int dot 17 in

rec fr(x : int)int f: : : fr(x � 1) : : :g in

: : : f  fn; : : : ; f  fr; : : : ; (f ")(11); : : :

Thus, a call through a function valued variable may be to a nonrecursive or a

recursive function. This cannot be decided at compile time. Hence, the calling

conventions for nonrecursive and recursive functions must be compatible. tu

Solution a) The representation of a recursive function f is as always a pair

h ip; ep i

where ip is the function body code, to be executed in environment ep extended

by a binding for the parameter value. The only change introduced by recursion

is that, in the hip; epi pair that is the value of a recursive function f , the

environment ep should contain a binding for f . A little thought should convince

you that this just puts a cycle in the data structure for the function value. The

code of the function body is unchanged from the nonrecursive case, and so is

the code for function invocation.

The code generation function case for a recursive function block is roughly

a combination of the case for a let block and the case for a function valued

expression, modi�ed to introduce the \loop" in the data structure described

above.

K[[rec f(x : � )� 0 f e1 g in e2]]� =

p  newframe(2);

p[VAL+IP]  L1; p[VAL+EP]  ep;

q  newframe(2);

PUSH(q, p[VAL+EP]);

q[VAL+IP]  p[VAL+IP]; q[VAL+EP]  p[VAL+EP];

PUSH(p, ep);

goto L2;

L1:

K[[e1]](� � (f : : : :) � (x : � ))
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goto sp[LINK][VAL+IP];

L2:

K[[e2]](� � (f : : : :))

POP(ep)

As always, L1 and L2 are globally unique labels. The code is very similar to the

code for a � expression. Putting the cycle into the environment data structure is

the slightly tricky part. Both p and q are equivalent hip; epi pairs, representing

the value of f . The ep component of both these pairs is q itself, which is pushed

onto the ep stack of p. This is the only reason q exists { it is just \part of" the

function value.

Then p is pushed onto the environment as the binding for f . We jump to L2

and execute the code for the block body e2. We then pop the binding for f (to

restore the environment) and we are �nished.

Note the code for the body of f , starting at L1, is compiled in a context that

includes both f and the function parameter x. At run time f corresponds to

the frame q that was constructed above, while x will be supplied by the caller

as usual. tu

3 Self Types

Consider the following program:

class C1 f

m1 : method()C1 f newobj(C1) g g

subclass C2 of C1 f

f : var int;

m2 : method(x : Self) int f : : : g g

a) (10 points) Argue that the expression

let c2 � newobj(C2) in c2:m2(c2:m1())

cannot be considered type correct, by giving a method body for m2 that results

in a type error. tu
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Solution a) If Self is considered equivalent to C2 inside the class de�nition

for C2, then in the body of m2 we should expect to be able to reference the

�eld f , which is an attribute of C2 but not of C1. The value returned from m1,

which is produced by invoking the constructor for C1, has no f attribute. This

is true even if m1 is obtained by selecting from an object of class C2, since m1

is inherited from C1. Thus, the expression

(x:f) "

as the body of m2 references a nonexistent attribute. tu

b) (10 points) Suppose we change the de�nition of C1 to

class C1 f

m1 : method()Self f newobj(C1) g g

Where is the type error now? Suggest a way to �x this problem. tu

Solution b) This change moves the type error to the result ofm1. Speci�cally,

the invocation

newobj(C1)

in m1 produces a result of the instance type of C1, but the result type of m1 is

speci�ed as Self. This is correct only under the assumption

IT [[C1]] � Self

but any subclass will violate this assumption.

In general, the only types we can guarantee to be subtypes of Self are types

derived somehow from Self or self. For example, there is no fundamental

problem in supporting

newobj( Self )

which would be guaranteed always to construct an object of the Self type even

when invoked in an inherited method. tu
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4 The Pair Calculus

In this question we develop a little calculus inspired by the untyped object

calculus. We call it the pair calculus, because values are ordered pairs.

Here is the syntax of the pair calculus:

e ::= x (identi�er reference)

j e:fst (select �rst component)

j e:snd (select second component)

j &(x)he1; e2i (pair formation)

j (e1 ./ e2) (combining)

The �rst case is the usual identi�er reference case for bound variables.

The next two cases are just �eld selection, as for object or product types. The

meaning is closer to method invocation (object types) than to �eld selection

(product types), as components are evaluated \lazily" as described below.

The fourth case, \pair formation," is similar to an object construction expression

in the object calculus. That is,

&(x)he1; e2 i is like [ fst � &(x)e1; snd � &(x)e2 ]

In both cases the &(x) serves as a binding construct. The parameter x is bound

to the containing pair for evaluation of e1 or e2. Like a � abstraction, a & ab-

straction is irreducible. It shields the body expressions from evaluation until an

actual selection is performed, at which point the selected component expression

is evaluated \lazily."

For example, if A is an irreducible expression, the term

(&(x)h x:snd; A i):fst

should evaluate to A.

The �nal case, \combining," is intended to serve the same role as method up-

dating in the object calculus. It is a bit diÆcult to describe informally, so we

present a large step evaluation rule for it:

e ! &(x)he1; e2i

e
0 ! &(x0)he0

1
; e

0

2
i

(e ./ e
0) ! &(x)he2; [x==x

0](e0

1
)i
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The substitution operator [�==�]e is assumed to do renaming if necessary to avoid

capture. Thus, the ./ operator makes a new pair from the second component

of its left operand and the �rst component of its right operand, renaming the

bound variable appropriately.

For example, if A, B, and D are irreducible terms, then

(&(x)h A; B i) ./ (&(x0)h x0
; D i)

reduces to

&(x)h B; x i

Note the renaming of x0 to x in the second component.

a) (10 points) Give eager large step evaluation rules for the pair calculus just

described. tu

Solution a) Note that & behaves like � { the component expressions of a &

abstraction are not evaluated, even by eager rules, until they are selected.

As usual, we treat as values the closed irreducible terms { in this case &-terms.

The rules are

v ! v

e ! v
0 � &(x)h e1; e2 i

([v0
=x](e1)) ! v

e:fst ! v

e ! v
0 � &(x)h e1; e2 i

([v0
=x](e2)) ! v

e:snd ! v

There is no possibility of capture in these rules, since we substitute only (closed)

values. tu

b) (10 points) Let A, B, C and D be irreducible terms in the pair calculus.

Use your rules to reduce

((&(x)h A; x:snd i) ./ (&(y)h C; D i)):fst

to an irreducible term. Hint: the result should be C. tu
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c) (5 points) Let A be some term that reduces to a pair value

&(x)h v1; v2 i

Can you �nd a term that reduces to

&(x)h v2; v1 i

(that is, to the \reversal" of the value)? tu

Solution c) It turns out this was an ill-advised question. First, the \obvious"

solution

&(x)h A:snd; A:fst i

is perfectly correct for arbitrary A (that is, even if A diverges or reduces to a

value of the form

&(x)h e1; e2 i

where e1 and e2 are not both closed). The more \clever" answer, which is the

one I expected and which most people seem to have noticed, is

A ! &(x)h v1; v2 i ) (A ./ A) ! &(x)h v2; v1 i

That is, the ./ operator can be used to reverse a pair of values. Note this trick

works only because v1 and v2 are closed. For example, consider replacing v2 by

x:fst. The resulting term would be

&(x)hv1; x:fsti ./ &(x)hv1; x:fsti

! &(x)h x:fst; v1 i

and the �rst component now diverges { de�nitely not reversal!

That's all right, because the question was posed for A of the restricted form

where v1 and v2 are closed values, and either of the above solutions is correct in

that case. Unfortunately, I think this question may have confused a few people

about the interpretation of values and lazy/eager evaluation in the pair calculus,

and for that I apologize. tu

d) (5 points) Give a pair calculus term whose evaluation diverges. tu
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Solution d)

(&(x)h x:snd; x:fst i):fst

tu

Now consider a version of the untyped lambda calculus

e ::= x j � x : e j e1(e2)

that uses the eager evaluation rules:

v ! v

and

e1 ! � x : e
0

1

e2 ! v2

([v2=x](e
0

1
)) ! v

e1(e2) ! v

As usual, the values v are closed irreducible terms.

e) (20 points) Give a translation T [[�]] taking terms in the untyped lambda cal-

culus to terms in the pair calculus. Your translation should preserve derivations.

Show this in the forward direction { that is, prove

e1 !� e2 ) T [[e1]] !p T [[e2]]

(where !� means reduction in the lambda calculus, and !p means reduction

in the pair calculus). The proof should be by induction on derivations !�. tu

Solution e) The examples in the previous parts of this problem were intended

to suggest the solution here. Recall how we embedded the lambda calculus into

the untyped object calculus. A function was represented as an object with a val

method. To call the function, we would update the arg method to something

that produced the desired argument value when invoked; then we would invoke

the val method to extract the result. This worked because the caller and callee

had an agreed-upon place to put the argument value { the arg attribute.
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We can do essentially the same thing in the pair calculus. We use the fst and

snd components of a pair to store the function and argument values; and we

simulate updating the components using the ./ operator. Here are the details.

T [[x]] = x

T [[�x:e]] = &(x)h x:fst; [x:snd=x](T [[e]]) i

T [[e1(e2)]] = ((T [[e1]]) ./ (&(z)h T [[e2]]; z:snd i)):fst

where z is not free in e2

We need to prove that derivations are preserved by this translation, as required

in the problem statement above. We'll do this by induction on the derivation

of e1 !� e2. First, a few preliminary observations.

Lemma 1. Free variables are preserved by the translation:

FV [[e]] = FV [[T [[e]]]]

for any expression e. This is easily proved by induction on the structure of E.tu

Lemma 2. Values are preserved by the translation: if e is a lambda calculus

value (a closed �-term) then T [[e]] is a pair calculus value (a closed &-term). This

is immediate from Lemma 1.tu

Lemma 3. Substitution of closed terms commutes with the translation. That

is, if e2 is closed, then

T [[ [e2=x]e1 ]] = [T [[e2]]=x](T [[e1]])

This is one of those intuitively obvious facts with a straightforward but fairly

lengthy proof, which I shall not present here. But be aware that we're relying

on it.tu

Finally, a special case of the copy rule for terminating expressions:
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Lemma 4. If e2 is closed,

(e2 !p v2) ^ (([v2=x]e1) !p v1)

) (([e2=x]e1) !p v1)

This is proved as usual by induction on derivations.tu

Now we show

e1 !� e2 ) T [[e1]] !p T [[e2]]

by induction on the derivation of e1 !� e2. There are only two rules.

Case 1: The derivation is v !� v. This implies e1 = e2, and it is a value in the

lambda calculus. By Lemma 2, this implies T [[e1]] is a value in the pair calculus,

and the result is immediate.

Case 2: The derivation ends with a use of the application rule

e1 ! � x : e
0

1

e2 ! v2

([v2=x](e
0

1
)) ! v

e1(e2) ! v

Inductively we know the following

T [[e1]] !p T [[�x:e0

1
]] = &(x)h: : : ; [x:snd=x]T [[e0

1
]]i

T [[e2]] !p T [[v2]]

and

T [[[v2=x](e
0

1
)]] = [T [[v2]]=x]T [[e

0

1
]] !p T [[v]]

where the equality in the last line follows from Lemma 3.

We need to conclude

T [[e1(e2)]] !p T [[v]]

(after some renaming of the conclusion to conform to the naming conventions

of of the application rule).
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Substituting in the appropriate case of the de�nition of T [[�]], we get

T [[e1(e2)]] ,! (T [[e1]] ./ &(z)hT [[e2]]; T [[e2]]i):fst

= (&(x)h: : : ; [x:snd=x]T [[e0

1
]]i ./ &(z)hT [[e2]]; T [[e2]]i):fst

,! &(x)h[s:xnd=x]T [[e0

1
]]; t[[e2]]i:fst

where the last step follows because e2 is closed, so substitution for z is a no-op.

Expansion of the selection yields

,! [T [[e2]]=x]T [[e
0

1
]]

From this, and the observation made above that

T [[e2]] !p T [[v2]]

we can apply Lemma 4 to conclude

([T [[e2]]=x]T [[e
0

1
]]) ! T [[v]]

as desired. tu
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