Dijkstra’s Algorithm: Correctness

Suppose we add vertices vy, vo, . .., v, to S, in that order.
e After the kth iteration of the loop, S = {vy,..., v}
We prove (by induction on k) that after the k iteration
of the loop:
1. dv] < dfw) < ... <dv] < dp'] forv' ¢ S
e We add vertices to .S in order of distance.
2. d[v] = é(s,v) for every element in S.

eie, forvy,...,u

Base case—k = 1: v1 = s, s0 1 and 2 are trivial.

The Bellman-Ford Algorithm

Bellman-Ford solves single-source shortest-path problems
even with negative edge weights.

e [t also detects negative-weight cycles
BELLMAN-FORD(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 fori—1to |[V[G]| -1

3 do for each edge (u,v) € E|G]
4 do RELAX(u,v,w)

5 for each edge (u,v) € E|G]

6 do if d[v] > d[u] + w(u,v)

7 then return FALSE

8 return TRUE

Example:

Suppose k = k' + 1 and result holds for k.

Key observation: if t is one of the k closest vertices to s
and p = (s,v1,...,Un,t) is a shortest path from s to ¢,
then s,v1,...,0, € S.

e The only vertices that can precede v on the path are
ones that are strictly closer to s.

o By induction hyp., closer vertices are in S
e Also, must have d(s, t) = 0(s, vy) + w(vp, t)
o In general, have only d(s,t) < (s, v,,) + w(v,,, t)
e This depends on distances being nonnegative.
Conclusions:

e before kth iteration, the vertex ¢ with minimum d in
S —V is one of the kth closest (there may be ties).

o For vertex t, d(s, t) = d[t] (induction hypothesis)

e Thus, the vertex added at kth iteration of the algo-
rithm is one of the kth closest.

o Therefore properties 1 and 2 in induction hold

Bellman-Ford: Running Time

o Initialization takes O(|V])
e Go through outer loop (lines 2-4) |V'| — 1 times
e Go through inner loop (lines 3-4) |E| times
e Total time in loop is O(|V||E|)
e Go through loop in lines 5-7 | E/| times
e Total running time: O(|V||E|)
In general, Bellman-Ford is worse than Dijkstra.

o Dijkstra takes O(|V|1g [V |+|E|) or O((|V|+|E|) g |V])
or O(|V?), depending on how we implement priority
queues

This is the price we have to pay to deal with negative
edge weights.

Bellman-Ford: Correctness

Theorem: If there is no path from s to ¢ with a negative-
weight cycle, then d[t] = d(s,t) after running Bellman-
Ford. Bellman-Ford returns TRUE if there are no negative-
weight cycles in G reachable from s; otherwise it returns
FALSE.

Proof: Suppose there are no negative-weight cycles on
a path from s to t and p = (vg,v1,...,v;) is a shortest
path from s to ¢ (s = vy, t = vy).

e This means that (vo, . . ., v;) is a shortest path from s
to v;, and there are no negative-weight cycles on any
path from s to v;

We prove by induction on j that after the jth pass through
the loop, dfv;] = d(s,v;) for i =0,...,J.

SY

If there is a negative-weight cycle (v, . .., vg) with vy =
vy, reachable from s, then

k.
1w(vi,1, v;) < 0.

If Bellman-Ford returns TRUE, then d[v;] < dv;_1] +
w(v;_1,v;). That means
k k
X dl] < . (dlviea] +w(vie1,vi))
Since v; is reachable, i = 0,... k:
e d[v;] < oo,
ot dv] < o0
Since vy = vy,
> dlv] = ¥ dlvi]

Conclusion:

Contradiction!

Therefore, Bellman-Ford returns FALSE if a negative-weight
cycle is reachable.

Base case: j = 0— initially, d[s] = 0, so OK.

Inductive step: Suppose j = j'+1. Notice that §(s, v;) =
d(s,vy) +w(u,v).

By induction, é(s,v;) = d[vy] after we go through the
loop j' times.

After doing RELAX (vjr, v;, w), get
dlv;] < dfvy] + w(vy, v;) = 6(s,v;)
By Relaxation Property,
dfv;] = (s, v;)
Conclusion: d[v;] = d(s, v;) after jth iteration.

If there are no negative-weight cycles on any path between
s and ¢, the shortest path must have at most V[G] vertices
(including s and t).

® no vertex is repeated

Thus, d[t] = (s, t) after Bellman-Ford.

If there are no negative-weight cycles reachable from s,
then d[t] = (s, t) for all vertices t.

o Thus, djv] < du] + w(u, v) for each edge (u,v)

Therefore, Bellman-Ford returns TRUE.

Single-Source Shortest Paths in Dags

There is a better algorithm for single-source shortest paths
in dags.

DAG-SHORTEST-PATHS(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 Topologically sort the vertices of G

3 for each vertex u taken in topologically sorted order
4 do for each vertex v € Adj[u]

5 do RELAX(u, v, w)

Don’t have to worry about negative-weight cycles.
® There are none!
Running time is O(|V| + | E|)
o Initialization takes O(|V])
o Topological sort takes O(|V| + |E])
o assuming adjacency-list representation.
e We go through the loop at most |F| times
o Once for each edge
e Since we don’t have to update the priority queue, each

iteration through the loop takes O(1) time

8

Dag Shortest Path: Correctness

Want to show that d[v] = d(s,v) after running DAG-
SHORTEST-PATH(G, w,)

If §(s,v) = oo, v is not reachable from s, and this is
clearly true (since d[v] > d(s, v)).

If §(s,v) < o0, let p = (v, . ..
from s to v (vg = s, v, = V).

,u) be a shortest path

Notice v;_1 precedes v; in the topological sort
(since (v;_1,v;) is an edge).

e Thus we relax the edges in the order (vp, v1), (v1, v2),
) (Uk'—la Uk')'
We prove that d[v;] = 0(s, v;) when you relax (v;, vit1)
by induction on i
e OK if i = 0 (since vy = s)
e Note that 0(s, vi11) = d(s
guarantees that d[vi1] =

, 0i)F+w(v;, vit1), 80 RELAX (04, V41, w)
5(8, U,j+1).

Minimum Spanning Trees

A spanning tree of a graph G(V, E) is a connected acyclic
subgraph of G, which includes all the vertices in V' and
some edges from F.

A minimum spanning tree (MST) is a spanning tree is a
spanning tree that uses the least number of edges among
all spanning trees.

e more generally, we assume that edges have weights,
and we want a spanning tree of minimum total weight

o This assumes are given a graph G = (V, E) and a
weight function w : F — R

o minimum spanning tree is actually short for “minimum-
weight spanning tree”

e A graph may have more than one MST

Think of a MST as a “backbone”; a minimal set of edges
that will let you get everywhere in a graph.

MSTs come up all the time:
e L.g.. finding a minimal wiring of a set of pins.
e Find a minimal number of messages you have to send

to get a message to everyone.

11

An Application: Finding Longest
Paths

In job scheduling, the vertices represent jobs and the
edges represent necessary precedence

e there is an edge from u to v if job « must be completed
before job v can begin

e the weight of (u, v) is the amount of time required to
do u.

The longest path in the graph is the critical path.

o This gives you the time required to perform the longest
sequence of jobs, so the total running time of the pro-
cess.

o It may make more sense to put the weight on the
vertex, not the edge.

If the graph is a dag, we can find the longest path easily:

e replace each weight w by —w, and find the shortest
path

10

A Generic Algorithm for Building
MSTs

We're going to build the spanning tree step by step, adding
one edge at a time.

e Invariant: at all times, we have a subgraph of some
MST

If A is a set of edges contained in some MST, (u,v) € E
is safe for A if AU{(u,v)} is also a subset of some MST.

GENERIC-MST(G(V, E), w)
A—10

1
2 while A is not a spanning tree

3 do find an edge (u,v) ¢ A safe for A
4 A—AU{(u,v)}

5 return A

This will clearly work:
e A is always a subset of some MST.

e If A is not a MST, then there must always be some

edge (u,v) ¢ A safe for A
o The hard part is finding it!

Recognizing Safe Edges

A cut (S,V — S) of an undirected graph G(V, E) is a

way of splitting it into two parts.

e An edge (u,v) crosses the cut if one of its endpoints
is in S, the other in V. — §

e A cut respects a set A of edges if no edge in A crosses
the cut

e A light edge is an edge of minimum weight crossing
a cut

o There may be more than one light edge

13

Theorem: If A is included in a MST for G(V, E) and
(S,V — 5) is a cut that respects A, then any light edge
(u,v) crossing (S, V — S) is safe for A.

Proof: Let T be a MST containing A.
o If T' contains (u,v), we are done
e If not, construct MST 7" containing A U {u,v}

Since T is a MST, there must be a path in 7" from u to
v. Adding (u, v) gives us a cycle.

Since (u, v) crosses from S to V' — S| there must be an-
other edge (z,y) on the cycle that also crosses from S to

V-5
e (z,y) can’t be in A, since A respects the cut.
o T =T—{(z,y)} U{(u,v)} must be a spanning tree.
e Since (u,v) is light, we must have w(u, v) < w(z,y).
e Therefore T is a MST that contains A U {u, v}.

e Therefore (u,v) is safe for A.

14

