Dijkstra's Algorithm: Correctness

Suppose we add vertices $v_{1}, v_{2}, \ldots, v_{n}$ to S, in that order.

- After the k th iteration of the loop, $S=\left\{v_{1}, \ldots, v_{k}\right\}$.

We prove (by induction on k) that after the k iteration of the loop:

1. $d\left[v_{1}\right] \leq d\left[v_{2}\right] \leq \ldots \leq d\left[v_{k}\right] \leq d\left[v^{\prime}\right]$ for $v^{\prime} \notin S$

- We add vertices to S in order of distance.

2. $d[v]=\delta(s, v)$ for every element in S.

- i.e., for v_{1}, \ldots, v_{k}

Base case $k=1: v_{1}=s$, so 1 and 2 are trivial.

Suppose $k=k^{\prime}+1$ and result holds for k^{\prime}.
Key observation: if t is one of the k closest vertices to s and $p=\left(s, v_{1}, \ldots, v_{m}, t\right)$ is a shortest path from s to t, then $s, v_{1}, \ldots, v_{m} \in S$.

- The only vertices that can precede v on the path are ones that are strictly closer to s.
- By induction hyp., closer vertices are in S
- Also, must have $\delta(s, t)=\delta\left(s, v_{m}\right)+w\left(v_{m}, t\right)$
- In general, have only $\delta(s, t) \leq \delta\left(s, v_{m}\right)+w\left(v_{m}, t\right)$
- This depends on distances being nonnegative.

Conclusions:

- before k th iteration, the vertex t with minimum d in $S-V$ is one of the k th closest (there may be ties).
- For vertex $t, \delta(s, t)=d[t]$ (induction hypothesis)
- Thus, the vertex added at k th iteration of the algorithm is one of the k th closest.
- Therefore properties 1 and 2 in induction hold

The Bellman-Ford Algorithm

Bellman-Ford solves single-source shortest-path problems even with negative edge weights.

- It also detects negative-weight cycles
$\operatorname{Bellman-Ford}(G, w, s)$
1 Initialize-Single-Source (G, s)
2 for $i \leftarrow 1$ to $|V[G]|-1$
3 do for each edge $(u, v) \in E[G]$
4 do $\operatorname{Relax}(u, v, w)$
5 for each edge $(u, v) \in E[G]$
$6 \quad$ do if $d[v]>d[u]+w(u, v)$
7 then return FALSE
8 return TRUE
Example:

Bellman-Ford: Running Time

- Initialization takes $O(|V|)$
- Go through outer loop (lines 2-4) $|V|-1$ times
- Go through inner loop (lines 3-4) $|E|$ times
- Total time in loop is $O(|V||E|)$
- Go through loop in lines 5-7 $|E|$ times
- Total running time: $O(|V||E|)$

In general, Bellman-Ford is worse than Dijkstra.

- Dijkstra takes $O(|V| \lg |V|+|E|)$ or $O((|V|+|E|) \lg |V|)$ or $O\left(\left|V^{2}\right|\right)$, depending on how we implement priority queues

This is the price we have to pay to deal with negative edge weights.

Bellman-Ford: Correctness

Theorem: If there is no path from s to t with a negativeweight cycle, then $d[t]=\delta(s, t)$ after running BellmanFord. Bellman-Ford returns TRUE if there are no negativeweight cycles in G reachable from s; otherwise it returns FALSE.
Proof: Suppose there are no negative-weight cycles on a path from s to t and $p=\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ is a shortest path from s to $t\left(s=v_{0}, t=v_{k}\right)$.

- This means that $\left(v_{0}, \ldots, v_{j}\right)$ is a shortest path from s to v_{j}, and there are no negative-weight cycles on any path from s to v_{j}
We prove by induction on j that after the j th pass through the loop, $d\left[v_{i}\right]=\delta\left(s, v_{i}\right)$ for $i=0, \ldots, j$.

Base case: $j=0-$ initially, $d[s]=0$, so OK.
Inductive step: Suppose $j=j^{\prime}+1$. Notice that $\delta\left(s, v_{j}\right)=$ $\delta\left(s, v_{j^{\prime}}\right)+w(u, v)$.
By induction, $\delta\left(s, v_{j^{\prime}}\right)=d\left[v_{j^{\prime}}\right]$ after we go through the loop j^{\prime} times.

After doing $\operatorname{RELAx}\left(v_{j^{\prime}}, v_{j}, w\right)$, get

$$
d\left[v_{j}\right] \leq d\left[v_{j^{\prime}}\right]+w\left(v_{j^{\prime}}, v_{j}\right)=\delta\left(s, v_{j}\right)
$$

By Relaxation Property,

$$
d\left[v_{j}\right] \geq \delta\left(s, v_{j}\right)
$$

Conclusion: $d\left[v_{j}\right]=\delta\left(s, v_{j}\right)$ after j th iteration.
If there are no negative-weight cycles on any path between s and t, the shortest path must have at most $V[G]$ vertices (including s and t).

- no vertex is repeated

Thus, $d[t]=\delta(s, t)$ after Bellman-Ford.
If there are no negative-weight cycles reachable from s, then $d[t]=\delta(s, t)$ for all vertices t.

- Thus, $d[v] \leq d[u]+w(u, v)$ for each edge (u, v)

Therefore, Bellman-Ford returns TRUE.

If there is a negative-weight cycle $\left(v_{0}, \ldots, v_{k}\right)$ with $v_{0}=$ v_{k} reachable from s, then

$$
\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)<0
$$

If Bellman-Ford returns TRUE, then $d\left[v_{i}\right] \leq d\left[v_{i-1}\right]+$ $w\left(v_{i-1}, v_{i}\right)$. That means

$$
\sum_{i=1}^{k} d\left[v_{i}\right] \leq \sum_{i=1}^{k}\left(d\left[v_{i-1}\right]+w\left(v_{i-1}, v_{i}\right)\right)
$$

Since v_{i} is reachable, $i=0, \ldots, k$:

- $d\left[v_{i}\right]<\infty$,
- $\Sigma_{i=1}^{k} d\left[v_{i}\right]<\infty$

Since $v_{0}=v_{k}$,

$$
\sum_{i=1}^{k} d\left[v_{i}\right]=\sum_{i=1}^{k} d\left[v_{i-1}\right]
$$

Conclusion:

$$
\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right) \geq 0
$$

Contradiction!
Therefore, Bellman-Ford returns FALSE if a negative-weight cycle is reachable.

Single-Source Shortest Paths in Dags

There is a better algorithm for single-source shortest paths in dags.

Dag-Shortest-Paths (G, w, s)
1 Initialize-Single-Source (G, s)
2 Topologically sort the vertices of G
3 for each vertex u taken in topologically sorted order
4 do for each vertex $v \in \operatorname{Adj}[u]$
$5 \quad$ do $\operatorname{Relax}(u, v, w)$

Don't have to worry about negative-weight cycles.

- There are none!

Running time is $O(|V|+|E|)$

- Initialization takes $O(|V|)$
- Topological sort takes $O(|V|+|E|)$
- assuming adjacency-list representation.
- We go through the loop at most $|E|$ times
- Once for each edge
- Since we don't have to update the priority queue, each iteration through the loop takes $O(1)$ time

Dag Shortest Path: Correctness

Want to show that $d[v]=\delta(s, v)$ after running DAG-Shortest-Path (G, w, s)

If $\delta(s, v)=\infty, v$ is not reachable from s, and this is clearly true (since $d[v] \geq \delta(s, v)$).

If $\delta(s, v)<\infty$, let $p=\left(v_{0}, \ldots, v_{k}\right)$ be a shortest path from s to $v\left(v_{0}=s, v_{k}=v\right)$.

Notice v_{i-1} precedes v_{i} in the topological sort (since $\left(v_{i-1}, v_{i}\right)$ is an edge).

- Thus we relax the edges in the order $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right)$, $\ldots,\left(v_{k-1}, v_{k}\right)$.

We prove that $d\left[v_{i}\right]=\delta\left(s, v_{i}\right)$ when you relax $\left(v_{i}, v_{i+1}\right)$ by induction on i :

- OK if $i=0\left(\right.$ since $\left.v_{0}=s\right)$
- Note that $\delta\left(s, v_{i+1}\right)=\delta\left(s, v_{i}\right)+w\left(v_{i}, v_{i+1}\right)$, so $\operatorname{ReLax}\left(v_{i}, v_{i+1}\right.$, guarantees that $d\left[v_{i+1}\right]=\delta\left(s, v_{i+1}\right)$.

An Application: Finding Longest Paths

In job scheduling, the vertices represent jobs and the edges represent necessary precedence

- there is an edge from u to v if job u must be completed before job v can begin
- the weight of (u, v) is the amount of time required to do u.

The longest path in the graph is the critical path.

- This gives you the time required to perform the longest sequence of jobs, so the total running time of the process.
- It may make more sense to put the weight on the vertex, not the edge.

If the graph is a dag, we can find the longest path easily:

- replace each weight w by $-w$, and find the shortest path

Minimum Spanning Trees

A spanning tree of a graph $G(V, E)$ is a connected acyclic subgraph of G, which includes all the vertices in V and some edges from E.
A minimum spanning tree ($M S T$) is a spanning tree is a spanning tree that uses the least number of edges among all spanning trees.

- more generally, we assume that edges have weights, and we want a spanning tree of minimum total weight
- This assumes are given a graph $G=(V, E)$ and a weight function $w: E \rightarrow \mathbf{R}$
- minimum spanning tree is actually short for "minimumweight spanning tree"
- A graph may have more than one MST

Think of a MST as a "backbone"; a minimal set of edges that will let you get everywhere in a graph.

MSTs come up all the time:

- E.g., finding a minimal wiring of a set of pins.
- Find a minimal number of messages you have to send to get a message to everyone.

A Generic Algorithm for Building MSTs

We're going to build the spanning tree step by step, adding one edge at a time.

- Invariant: at all times, we have a subgraph of some MST

If A is a set of edges contained in some $\operatorname{MST},(u, v) \in E$ is safe for A if $A \cup\{(u, v)\}$ is also a subset of some MST.
$\operatorname{GEnERIC}-\operatorname{MST}(G(V, E), w)$
$1 \quad A \leftarrow \emptyset$
2 while A is not a spanning tree
3 do find an edge $(u, v) \notin A$ safe for A
$4 \quad A \leftarrow A \cup\{(u, v)\}$
5 return A
This will clearly work:

- A is always a subset of some MST.
- If A is not a MST, then there must always be some edge $(u, v) \notin A$ safe for A
- The hard part is finding it!

Recognizing Safe Edges

A cut $(S, V-S)$ of an undirected graph $G(V, E)$ is a way of splitting it into two parts.

- An edge (u, v) crosses the cut if one of its endpoints is in S, the other in $V-S$
- A cut respects a set A of edges if no edge in A crosses the cut
- A light edge is an edge of minimum weight crossing a cut
- There may be more than one light edge

Theorem: If A is included in a MST for $G(V, E)$ and ($S, V-S$) is a cut that respects A, then any light edge (u, v) crossing $(S, V-S)$ is safe for A.
Proof: Let T be a MST containing A.

- If T contains (u, v), we are done
- If not, construct MST T^{\prime} containing $A \cup\{u, v\}$

Since T is a MST, there must be a path in T from u to v. Adding (u, v) gives us a cycle.

Since (u, v) crosses from S to $V-S$, there must be another edge (x, y) on the cycle that also crosses from S to $V-S$.

- (x, y) can't be in A, since A respects the cut.
- $T^{\prime}=T-\{(x, y)\} \cup\{(u, v)\}$ must be a spanning tree.
- Since (u, v) is light, we must have $w(u, v) \leq w(x, y)$.
- Therefore T^{\prime} is a MST that contains $A \cup\{u, v\}$.
- Therefore (u, v) is safe for A.

