Dijkstra's Algorithm: Correctness

Suppose we add vertices v_1, v_2, \ldots, v_n to S, in that order.

• After the kth iteration of the loop, $S = \{v_1, \ldots, v_k\}$.

We prove (by induction on k) that after the k iteration of the loop:

- 1. $d[v_1] \leq d[v_2] \leq \ldots \leq d[v_k] \leq d[v']$ for $v' \notin S$
 - We add vertices to S in order of distance.
- 2. $d[v] = \delta(s, v)$ for every element in S.

• i.e., for v_1, \ldots, v_k

Base case–k = 1: $v_1 = s$, so 1 and 2 are trivial.

Suppose k = k' + 1 and result holds for k'.

Key observation: if t is one of the k closest vertices to s and $p = (s, v_1, \ldots, v_m, t)$ is a shortest path from s to t, then $s, v_1, \ldots, v_m \in S$.

• The only vertices that can precede v on the path are ones that are strictly closer to s.

 \circ By induction hyp., closer vertices are in S

• Also, must have $\delta(s,t) = \delta(s,v_m) + w(v_m,t)$

• In general, have only $\delta(s,t) \leq \delta(s,v_m) + w(v_m,t)$

• This depends on distances being *nonnegative*.

Conclusions:

- before kth iteration, the vertex t with minimum d in S V is one of the kth closest (there may be ties).
- For vertex t, $\delta(s, t) = d[t]$ (induction hypothesis)
- Thus, the vertex added at *k*th iteration of the algorithm is one of the *k*th closest.

 \circ Therefore properties 1 and 2 in induction hold

The Bellman-Ford Algorithm

Bellman-Ford solves single-source shortest-path problems even with negative edge weights.

• It also detects negative-weight cycles

```
\operatorname{Bellman-Ford}(G,w,s)
```

```
INITIALIZE-SINGLE-SOURCE(G, s)
1
   for i \leftarrow 1 to |V[G]| - 1
2
3
        do for each edge (u, v) \in E[G]
                do \operatorname{Relax}(u, v, w)
4
5
   for each edge (u, v) \in E[G]
6
        do if d[v] > d[u] + w(u, v)
7
              then return FALSE
8
   return TRUE
```

Example:

Bellman-Ford: Running Time

- \bullet Initialization takes O(|V|)
- Go through outer loop (lines 2–4) |V| 1 times
- Go through inner loop (lines 3–4) |E| times
- Total time in loop is O(|V||E|)
- Go through loop in lines 5–7 |E| times
- Total running time: O(|V||E|)

In general, Bellman-Ford is worse than Dijkstra.

• Dijkstra takes $O(|V| \lg |V| + |E|)$ or $O((|V| + |E|) \lg |V|)$ or $O(|V^2|)$, depending on how we implement priority queues

This is the price we have to pay to deal with negative edge weights.

Bellman-Ford: Correctness

Theorem: If there is no path from s to t with a negativeweight cycle, then $d[t] = \delta(s, t)$ after running Bellman-Ford. Bellman-Ford returns TRUE if there are no negativeweight cycles in G reachable from s; otherwise it returns FALSE.

Proof: Suppose there are no negative-weight cycles on a path from s to t and $p = (v_0, v_1, \ldots, v_k)$ is a shortest path from s to t $(s = v_0, t = v_k)$.

• This means that (v_0, \ldots, v_j) is a shortest path from s to v_j , and there are no negative-weight cycles on any path from s to v_j

We prove by induction on j that after the jth pass through the loop, $d[v_i] = \delta(s, v_i)$ for $i = 0, \ldots, j$. Base case: j = 0 - initially, d[s] = 0, so OK. Inductive step: Suppose j = j'+1. Notice that $\delta(s, v_j) = \delta(s, v_{j'}) + w(u, v)$. By induction, $\delta(s, v_{j'}) = d[v_{j'}]$ after we go through the loop j' times.

After doing $\operatorname{RELAX}(v_{j'}, v_j, w)$, get

$$d[v_j] \le d[v_{j'}] + w(v_{j'}, v_j) = \delta(s, v_j)$$

By Relaxation Property,

$$d[v_j] \ge \delta(s, v_j)$$

Conclusion: $d[v_j] = \delta(s, v_j)$ after *j*th iteration.

If there are no negative-weight cycles on any path between s and t, the shortest path must have at most V[G] vertices (including s and t).

• no vertex is repeated

Thus, $d[t] = \delta(s, t)$ after Bellman-Ford.

If there are no negative-weight cycles reachable from s, then $d[t] = \delta(s, t)$ for all vertices t.

• Thus, $d[v] \leq d[u] + w(u, v)$ for each edge (u, v)

Therefore, Bellman-Ford returns TRUE.

If there is a negative-weight cycle (v_0, \ldots, v_k) with $v_0 = v_k$ reachable from s, then

$$\sum_{i=1}^{k} w(v_{i-1}, v_i) < 0.$$

If Bellman-Ford returns TRUE, then $d[v_i] \leq d[v_{i-1}] + w(v_{i-1}, v_i)$. That means

$$\sum_{i=1}^{k} d[v_i] \le \sum_{i=1}^{k} (d[v_{i-1}] + w(v_{i-1}, v_i))$$

Since v_i is reachable, $i = 0, \ldots, k$:

• $d[v_i] < \infty$,

•
$$\sum_{i=1}^k d[v_i] < \infty$$

Since $v_0 = v_k$,

$$\sum_{i=1}^{k} d[v_i] = \sum_{i=1}^{k} d[v_{i-1}]$$

Conclusion:

$$\sum_{i=1}^k w(v_{i-1}, v_i) \ge 0.$$

Contradiction!

Therefore, Bellman-Ford returns FALSE if a negative-weight cycle is reachable.

Single-Source Shortest Paths in Dags

There is a better algorithm for single-source shortest paths in dags.

DAG-Shortest-Paths (G, w, s)

```
1 Initialize-Single-Source(G, s)
```

- 2 Topologically sort the vertices of G
- 3 for each vertex u taken in topologically sorted order

```
4 do for each vertex v \in Adj[u]
```

```
5 do \operatorname{Relax}(u, v, w)
```

Don't have to worry about negative-weight cycles.

• There are none!

Running time is O(|V| + |E|)

- Initialization takes O(|V|)
- Topological sort takes O(|V| + |E|)

 \circ assuming adjacency-list representation.

- We go through the loop at most |E| times
 Once for each edge
- Since we don't have to update the priority queue, each iteration through the loop takes O(1) time

Dag Shortest Path: Correctness

Want to show that $d[v] = \delta(s, v)$ after running DAG-SHORTEST-PATH(G, w, s)

If $\delta(s, v) = \infty$, v is not reachable from s, and this is clearly true (since $d[v] \ge \delta(s, v)$).

If $\delta(s, v) < \infty$, let $p = (v_0, \ldots, v_k)$ be a shortest path from s to v ($v_0 = s$, $v_k = v$).

Notice v_{i-1} precedes v_i in the topological sort (since (v_{i-1}, v_i) is an edge).

• Thus we relax the edges in the order (v_0, v_1) , (v_1, v_2) , \ldots , (v_{k-1}, v_k) .

We prove that $d[v_i] = \delta(s, v_i)$ when you relax (v_i, v_{i+1}) by induction on i:

- OK if i = 0 (since $v_0 = s$)
- Note that $\delta(s, v_{i+1}) = \delta(s, v_i) + w(v_i, v_{i+1})$, so RELAX (v_i, v_{i+1}) , guarantees that $d[v_{i+1}] = \delta(s, v_{i+1})$.

An Application: Finding Longest Paths

In job scheduling, the vertices represent jobs and the edges represent necessary precedence

- there is an edge from u to v if job u must be completed before job v can begin
- the weight of (u, v) is the amount of time required to do u.

The longest path in the graph is the *critical path*.

- This gives you the time required to perform the longest sequence of jobs, so the total running time of the process.
 - It may make more sense to put the weight on the vertex, not the edge.

If the graph is a dag, we can find the longest path easily:

• replace each weight w by -w, and find the shortest path

Minimum Spanning Trees

A spanning tree of a graph G(V, E) is a connected acyclic subgraph of G, which includes all the vertices in V and some edges from E.

A minimum spanning tree (MST) is a spanning tree is a spanning tree that uses the least number of edges among all spanning trees.

- more generally, we assume that edges have weights, and we want a spanning tree of minimum total weight
 - \circ This assumes are given a graph G=(V,E) and a weight function $w:E\to {\bf R}$
 - minimum spanning tree is actually short for "minimumweight spanning tree"

• A graph may have more than one MST

Think of a MST as a "backbone"; a minimal set of edges that will let you get everywhere in a graph.

MSTs come up all the time:

- E.g., finding a minimal wiring of a set of pins.
- Find a minimal number of messages you have to send to get a message to everyone.

A Generic Algorithm for Building MSTs

We're going to build the spanning tree step by step, adding one edge at a time.

• Invariant: at all times, we have a subgraph of some MST

If A is a set of edges contained in some MST, $(u, v) \in E$ is *safe* for A if $A \cup \{(u, v)\}$ is also a subset of some MST.

```
Generic-MST(G(V, E), w)
```

```
1 A \leftarrow \emptyset

2 while A is not a spanning tree

3 do find an edge (u, v) \notin A safe for A

4 A \leftarrow A \cup \{(u, v)\}

5 return A
```

This will clearly work:

- A is always a subset of some MST.
- If A is not a MST, then there must always be some edge $(u, v) \notin A$ safe for A

• The hard part is finding it!

Recognizing Safe Edges

A cut (S, V - S) of an undirected graph G(V, E) is a way of splitting it into two parts.

- An edge (u, v) crosses the cut if one of its endpoints is in S, the other in V - S
- A cut *respects* a set A of edges if no edge in A crosses the cut
- A *light edge* is an edge of minimum weight crossing a cut

• There may be more than one light edge

Theorem: If A is included in a MST for G(V, E) and (S, V - S) is a cut that respects A, then any light edge (u, v) crossing (S, V - S) is safe for A.

Proof: Let T be a MST containing A.

- If T contains (u, v), we are done
- If not, construct MST T' containing $A \cup \{u, v\}$

Since T is a MST, there must be a path in T from u to v. Adding (u, v) gives us a cycle.

Since (u, v) crosses from S to V - S, there must be another edge (x, y) on the cycle that also crosses from S to V - S.

- (x, y) can't be in A, since A respects the cut.
- $T' = T \{(x, y)\} \cup \{(u, v)\}$ must be a spanning tree.
- Since (u, v) is light, we must have $w(u, v) \le w(x, y)$.
- Therefore T' is a MST that contains $A \cup \{u, v\}$.
- Therefore (u, v) is safe for A.