Shortest Paths

Suppose G(V, E) is a graph with weight function
w:FE — R.

The weight of path p = (vp,...,vg) is
w(p) = w(ve,v1) + - - + w(vk_1, k).

We'll be interested in paths of minimum weight from
u to v

e usually talk about shortest paths, but they’re only
shortest in unweighted graphs (i.e., if all weights
are 1)

BFS-SEARCH(s) gives shortest paths from s to any
vertex v in unweighted graphs.

e We represent shortest paths implicitly using ,
just as in BFS

Negative-weight edges

We allow weights to be negative.

e E.g., the weight between u and v could be the
gain/loss of taking the action that gets you from
u tow

Shortest paths are not well defined in graphs with
negative-weight cycles:

e The more times we go around the cycle, the “shorter’

the path

We can take 6(s,v) = —oo if there is a negative-
weight cycle on a path from s to v.

Lemma: If there is an edge from (u,v) € E, then
6(s,v) < 8(s,u) + w(u,v).

Proof: One way of getting from s to v is to go from
s to w and then from u to v.

e There may be better ways.

Various Shortest Path Problems

Single-source shortest-path problem: Given s, find
shortest path from s to every vertex v € V

e Chapter 25: Dijkstra’s algorithm, Bellman-Ford
Single-destination shortest-path problem: Given t,
find shortest path from every vertex v to ¢

e Single-source shortest-path problem from s in G

= single-destination shortest-path problem to s
in GT

e Single-destination = single-source in undirected

graphs
Single-pair shortest-path problem: Find shortest path
between s and ¢

e The best algorithms for this use the single-source
shortest-path algorithm

All-pairs shortest-path problem: Find shortest path
from s to ¢t for all s,t € V

e Could run single-source shortest-path algorithm
for each s, but there are (sometimes) better ways

e Chapter 26

Relaxation

Both Dijkstra’s algorithm and Bellman-Ford’s algo-
rithm use a technique called relazation. Idea:

o Initialize d[v] to oo, 7[v] to NIL
e Test if we can improve d[v] by going through u

o This makes sense only if there is an edge (u, v)

o The process of checking is called relazing (u,v)

INITIALIZE-SINGLE-SOURCE(G, s)

1 for each vertex v € V[G]

2 do d[v] «— oo
3 m[v] « NIL
4 d[s]<0

RELAX(u,v,w) [(u,v) € E[G], weight function w]
1 if d[v] > d[u] + w(u,v)

2 then d[v] « d[u] + w(u,v)

3] — u

Properties of Relaxation

Relaxation Property: If we start with INITIALIZE-
SINGLE-SOURCE(G, s), then d[v] > é(s,v), no mat-
ter how often we call RELAX. If d[v] is ever (s, v),
it never changes again.

Proof: This is true initially (since d[v] = co unless
v=2s).

If the property was true before RELAX(u, v, w), it is
true after:

o If d[v] < du] + w(u,v), RELAX(u, v, w) doesn’t
change anything

o If d[v] > d[u]+w(u,v) before, then after RELAX(u, v, w),

dv] = d[u] + w(u,v) > 6(s,u) +w(u,v) > 6(s,v).

Since d[v] never increases after a RELAX, if it hits
6(s,v), it does not change again.

The Relaxation Property holds even with negative
weights.

DLIKSTRA(G, w,)

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S0

3 Q< VG

4 while Q #0

5 do u — ExTrACT-MIN(Q)

6 S — SuU{u}

7 for each vertex v € Adj[u]
8 do RELAX(u,v,w)
Example

Dijkstra’s Algorithm

Dijkstra’s algorithm solves single-source shortest-path
problems if all weights are nonnegative.

Idea:

e Maintain list S of vertices whose shortest path
has already been computed

o We add elements to S in order of their distance
from s

o For v € S, we have d[v] = 6(s,v)

e Find vertex v’ € V — S that has current minimum
d value

o Maintain elements of V' — .S in a priority queue,
keyed by d values

e Add v' to S

e Update all values of d for remaining elements of
V-5

Dijkstra’s Algorithm: Analysis

In Dijkstra’s algorithm, we do
¢ |V| EXTRACT-MINS
o < |E| RELAXes (< 2|E| in the unordered case)
Thus, the running time depends on how we imple-
ment the priority queue.
o If we use an array
o EXTRACT-MIN takes time O(|V)
o RELAX takes time O(1)
o Total running time: O(|V|* + |E|) = O(|V]*)
e If we use binary heap
o EXTRACT-MIN takes time O(Ig|V])
o RELAX takes time O(lg |[V])

*x Need to perform DECREASE-KEYs to up-
date priority queue

o Total running time: O((|V| + |E|)1g|V])
o If we use Fibonacci heaps (Chapter 21)

o |E| DECREASE-KEYs take time O(|E|)

o Total running time: O(|V|1g|V]| + |E|)

8

