Prelim coverage

There’s a prelim in class on March 6.

e The review session is March 5, 7 PM, Upson 207
You're responsible for everything we’'ve cover up to
the end of this lecture:

¢ Big-O, © (Chapter 2.1)

e Solving recurrences using the Master Theorem

e Stacks, queues, and linked lists

e Hashing

e Binary Search Trees

e Priority Queues and Heaps

e Skip List + Union-Find

e Intro to Graph Algorithms (up to BFS)

You need to know

¢ advantages/disadvantages of various methods:

o e.g., hashing with chaining vs. open addressing

e how to implement basic operations (insert, delete,

search, etc.) on standard data structures.

1

Sparse vs. Dense Graphs

Note that if G = (V, E), then 0 < |E| < |V
e a graph is dense if |E| = Q(|V]?)
e a graph is sparse if |E| < [V|? (typically O(|V]))

Graph Algorithms
Review Section 5.4 (pp. 86-91).

Recall a graph G consists of vertices V and edges F
o We write G = (V, E) or G(V, E)
I will presume you know about:
o directed graphs vs. undirected graphs
e the degree (indegree, outdegree) of a vertex
e the length of a path
e reachability
e connected components
e subgraph (induced by V)
e complete graph
Will now consider some basic graph algorithms

e will deal data structure and representation issues
much more than in CS280

Representing Graphs

What’s the best way of representing a graph?
o depends on whether the graph is sparse or dense
There are two standard ways of representing graphs.
1. adjacency-list representation:
e Use an array Adj of |V| lists
e list Adj[u] consist of all v such that (u,v) € E
¢ |Adj[u]| = (out)degree(u)
o oycv |Adjlu]| = |E| for directed graphs
o oy |Adj[u]| = 2| E| for undirected graphs
e memory required = O(max(V, E)) = O(V+E)
e can easily represent weighted graphs
2. adjacency-matrix representation
e assume vertices are numbered 1, ..., |V]|
e use a |V| x |V| matrix A = (a;;)
L _[lifGg)€eE
Y 0 otherwise
e can also easily represent weighted graphs
e requires O(|V'|?) bits of storage
o vs. O(|V| + |E|) words for adjacency list

4

Breadth-First Search

Idea: starting at a vertex s (the source) in G(V, E),
systematically explore G:

e start with vertices closest to s and work out

e the search produces a “breadth-first tree”, with
s at the root

e if v is reachable from s, the path from s to v in
the tree is the shortest path from s to v in G

If we don’t reach the whole graph starting from s,
then start over at another vertex.

5

BFS(G)

1 for each vertex u € V(G)

2 do coloru] < WHITE

3 m[u] — NIL

4 for each vertex u € V(QG)

5 if color{u] = WHITE

6 then BFS-SEARCH(u)

BFS-SEARCH(S)

1 color|s] <« GRAY
2 d[s]=0
3 Qe (s}
4 while Q #0
5 do u <« head[Q)]
6 for each v € Adj[u]
(Adj[u] = {v : (u,v) € E}
7 if color[v] = WHITE
8 then color[v] <« GRAY
9 dlv] « dJu] +1
10] —u
11 ENQUEUE(Q, v)
12 DEQUEUE(Q)

13 color{u] < BLACK

Breadth-First Search Algorithm

Idea of the algorithm:
e Start at some vertex s
e Vertices are colored:

o white vertices — not yet “discovered”
o gray vertices — discovered, neighbors not checked
o black — discovered + neighbors checked

e algorithm uses a (FIFO) queue @ to manage the
gray vertices

e initially only s gray
e For each gray vertex v

o visit all its neighbors
o if they were white, color them gray
o then color v black

e array color is used to keep track of the color
o for later applications, keep track of

od[u] distance from u to s

o m[u] — parent of u in breadth-first tree

Running Time of BFS

Initialization (lines 1-4) takes time O(|V])
e must initialize color, d, w for all vertices
Each vertex gets ENQUEUEd at most once

e only vertices that have just changed from white
to gray get ENQUEUEd

e once a vertex becomes gray, it never changes back
to white

o it can’t get ENQUEUEd again

Each vertex gets DEQUEUEd at most once.

Each edge (u,v) is processed at most twice at line 6
of BFS-SEARCH:

e once for u, once for v

Running time is O(|V'|+|E|) using the adjacency-list
representation.

Properties of BFS

Let é6¢(u,v) be the shortest-path distance from u to
v in G:

e minimum number of edges on a path from u to v

Theorem: After running BFS-SEARCH(S), for ev-
ery vertex v reachable from s is visited and d[v] =
6(s,v); for v # s, w[v] is the predecessor of v on a
shortest path from s to v.

e This is true for both directed and undirected graphs.

This seems almost obvious from the construction of
the algorithm, but we need to be careful when we do
a formal proof . ..

Proof of Theorem: By Lemma 3, if (s, v) = oo,
then v is not discovered.

If 6(s,v) = k < oo, then we prove by induction on k
then there is a point in BFS-SEARCH(s) when we

e color v gray

e set dv] =k

e put v into @

e if s # v, then (7w[v],v) € F and d[r[v]] =k —1
Base case: v=s OK.
Inductive step: Suppose 6(s,v) =k + 1.

e Exists u such that 6(s,u) = k and (u,v) € E.

o If §(s,u’) < k, then (v/,v) ¢ E.
Induction assumption = u is ENQUEUED, d[u] = k.

We must discover v while processing u, if we haven’t
discovered it already.

Suppose we discover v while processing u'.
e Either v/ = u or we process u’ before u
e By Lemma 2, d[u'] < d[u] (= d[u] <k)
e Since §(s,v) = k+ 1, can’t have §(s,u’) < k.
e Thus, d(u') =k, d(v) =k + 1, m(v) =u'.

11

Lemma 1: Suppose at some point in BFS-SEARCH[s],
Q = [vgy ..., vk]. Then there is some %, j such that

dlv] = --- =dlyj] =1, dlvj] =--- =d[u] =1+ L

Proof: This is true initially (when Q = {s}).
The property is maintained after each pass through
the loop:

e when we process vy, we add white neighbors u of
vp to the end of Q, with d[u] = d[vg] + 1.

Lemma 2: If we enqueue vy, v9,vs,...,v; (in that
order), then d[v1] < d[we] <

Proof: Immediate from Lemma 1.

Lemma 3: Every vertex that is “discovered” (col-
ored gray in line 8) is reachable from s.

Proof: Show that this property is maintained on
each iteration of the loop. (Formally, by induction
on the k, show property holds on kth iteration of
loop.)

10

Breadth-First Trees

Let E, = {(n[v],v) : v € V, 7[v] # NIL}
o . CFE

Proposition: BFS(G) constructs m so that G, =
(V, E) is a forest (set of disjoint trees), whose roots
are the vertices s for which we call BFS-SEARCH(s).
Moreover, if s is the root of a tree, then v is in the
tree iff v is reachable from s, and the path from s to
v in the tree is a minimal length path from s to v in
G.

Note that this gives us another way of computing
the connected components of G if G is undirected.

12

Depth-First Search

This time we search a graph by following a path as
long as possible, then backtracking.

e We use a stack instead of a queue to keep track
of gray edges

As we discover vertex u, we timestamp it:
o We timestamp twice:

o once when we first discover v: d[v]

o again when we’re done with v’s adjacency list:
flv]

o v is white before d[v], gray between d[v] and

f[v], black after f[v]

13

Running Time of DFS

Initialization (lines 1-3) takes time O(|V).

We call DFS-VIsIT at most once for each u € V.
e We call DFS-VisiT[u] only when u is white

e u is colored gray as soon as we call DFS-VIsIT[u]

The total cost of lines 2-5 of DFS-Vi1srr[u] is O(| Adj[u]]).-

The total cost of lines 2 5 of all calls of DFS-VISIT
is

L, 0(Adj[u]]) = O(|E]).

Total cost of DFS is O(|V |+ |E|) (for the adjacency-
list representation).

e it would be O(|V'|?) for the adjacency-matrix rep-
resentation

15

DFS(G)

1 for each vertex u € V(G)

2 do color{u] «— WHITE

3 m[u] < NIL

4 time«+1

5 for each vertex u € V(G)

6 do if color[u] WHITE

7 then DFS-VisiT(u)

S

FS-VisiT(u)
color{u] < GRAY
dlu] « time
time < time + 1
for each v € Adj[u]
do if color[v] = WHITE
then 7[v] — u
DFS-VisiT[v]
color{u] « BLACK
flu] < time
0 time < time+ 1

= O 00~ O Otk WK -

14

Parenthesis Structure

Proposition: DFS(G) constructs 7 so that G, =
(V, Ex) is a forest whose roots are the vertices s for
which we call DFS-Visrr(s).

The start times and finish times for vertices u form
a parenthesis structure

o either [[d[u], f[u]] is contained in [[d[v], f[v]], or
they are disjoint.

16

Parenthesis Theorem: After running DFS(G),
for any vertices u and v in V(G), either

o [d[u], f[u]] and [d[v], f[v]] are disjoint
o [d[u], flul] N [d[v], flv]] = 0

o [d[u], f[u]] C [d[v], f[v]] and u is a descendant of
v in some tree of the depth-first forest

o [d[v], f[v]] C [d[u], f[u]] and v is a descendant of
u in some tree of the depth-first forest
Proof: Can’t have d[u] = d[v]

e whichever one is discovered first must have smaller
start time

Suppose d[u] < d[v]
o if d[v] < flu], v is discovered while u is still gray

o must be running DFS-VISIT(u)

o v is a descendant of u
o f(v) < f(u)
o if d(v) > f(u), intervals must be disjoint
Similar argument if d[v] < d[u].

Corollary: v is a descendant of u in the depth-first
forest iff d[u] < d[v] < f[v] < flu].

17

Topological Sort

A dag (directed acyclic graph) is a directed graph
with no cycles.

A topological sort of a dag G = (V,E) is a linear
ordering of the vertices in V such that if (u,v) € E,
then u < v.

e can’t do this if G has a cycle

Suppose the dag G describes a precedence ordering
of events

¢ (u,v) € E means that v must be done before v

Then a topological sort of G describes one way in
which the events can be performed.

e There may be several possible topological sorts
of a dag.

19

White Path Theorem: v is a descendant of u in
the depth-first forest iff when u is discovered, there is
a path from u to v consisting of only white vertices.

Proof: If v is a descendant of u, let w be any vertex
on the path from u to v in the depth-first forest.

e By previous corollary, d[w] > d[u].
e So w must be white at d[u] (w turns gray at d[w]).

So there is a path of white vertices from u to v at
time d[u].

Conversely, if there is a path from u to v consisting of
only white vertices of length k, we prove by induction
on k that v is a descendant of u. If k = 1:

e Algorithm guarantees that we must discover v

before f[u].
o dlu] < d[v] < f[v] < f[u] (Parenthesis Theorem)
e By Corollary, v is a descendant of u.
If k = k'+1, consider predecessor w of v on the path.
e w is a descendant of u (induction hyp.)

¢ By Corollary, d[u] < d[w] < flw] < f[u].
o Must have d[v] < flw].
¢ By Parenthesis Theorem, f[v] < flw] < f[u].

e By Corollary, v is a descendant of .

18

Using DFS for Topological Sort

We can use the finishing times of DFS to topologi-
cally sort

e vertices with earlier finishing times come later in
the list

TOPOLOGICAL-SORT(G)

1 call DFS(G)
2 each time a vertex is finished,

insert it onto the front of a linked list
3 return the linked list

Note: if there are n vertices, it may be better to
return an array T'[1..n]

e put vertices onto array starting at end

e T'[4] is ith vertex in the topological sort

20

Theorem: TOPOLOGICAL-SORT(G) produces a topo-
logical sort of G.

Proof: Must show that (u,v) € E = f(v) < f(u).
Case 1: We turn u gray before v.

e then we discover v while we are running DFS-
VIsIT(u)

e we finish v before we finish u
o f(v) < f(u)

Case 2: We turn v gray before u
e then we don’t discover u before we finish v

e otherwise u is a descendant of v in G and we have
a cycle

e s0 f[v] < d[u] < f[u].

21

