Prelim coverage

There's a prelim in class on March 6.

• The review session is March 5, 7 PM, Upson 207

You're responsible for everything we've cover up to the end of this lecture:

- Big-O, Θ (Chapter 2.1)
- Solving recurrences using the Master Theorem
- Stacks, queues, and linked lists
- Hashing
- Binary Search Trees
- Priority Queues and Heaps
- Skip List + Union-Find
- Intro to Graph Algorithms (up to BFS)

You need to know

- advantages/disadvantages of various methods:
 e.g., hashing with chaining vs. open addressing
- how to implement basic operations (insert, delete, search, etc.) on standard data structures.

1

Sparse vs. Dense Graphs

Note that if G = (V, E), then $0 \le |E| \le |V|^2$.

- a graph is dense if $|E| = \Omega(|V|^2)$
- a graph is sparse if $|E| \ll |V|^2$ (typically O(|V|))

Graph Algorithms

Review Section 5.4 (pp. 86–91).

Recall a graph G consists of vertices V and edges E

• We write G = (V, E) or G(V, E)

I will presume you know about:

- directed graphs vs. undirected graphs
- the degree (indegree, outdegree) of a vertex
- the length of a path
- reachability
- connected components
- subgraph (induced by V')
- complete graph

Will now consider some basic graph algorithms

 will deal data structure and representation issues much more than in CS280

2

Representing Graphs

What's the best way of representing a graph?

- depends on whether the graph is sparse or dense There are two standard ways of representing graphs.
- 1. adjacency-list representation:
 - Use an array Adj of |V| lists
 - list Adj[u] consist of all v such that $(u, v) \in E$
 - |Adj[u]| = (out) degree(u)
 - $\Sigma_{u \in V} |Adj[u]| = |E|$ for directed graphs
 - $\Sigma_{u \in V} |Adj[u]| = 2|E|$ for undirected graphs
 - memory required = $O(\max(V, E)) = O(V + E)$
 - can easily represent weighted graphs
- 2. adjacency-matrix representation
 - assume vertices are numbered $1, \ldots, |V|$
 - use a $|V| \times |V|$ matrix $A = (a_{ij})$

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

- can also easily represent weighted graphs
- requires $O(|V|^2)$ bits of storage • vs. O(|V| + |E|) words for adjacency list

3

Breadth-First Search

Idea: starting at a vertex s (the *source*) in G(V, E), systematically explore G:

- \bullet start with vertices closest to s and work out
- ullet the search produces a "breadth-first tree", with s at the root
- if v is reachable from s, the path from s to v in the tree is the shortest path from s to v in G

If we don't reach the whole graph starting from s, then start over at another vertex.

5

BFS(G)

```
1 for each vertex u \in V(G)

2 do color[u] \leftarrow \text{WHITE}

3 \pi[u] \leftarrow \text{NIL}

4 for each vertex u \in V(G)

5 if color[u] = \text{WHITE}

6 then BFS-Search(u)
```

```
BFS-SEARCH(s)

1 color[s] \leftarrow GRAY

2 d[s] = 0

3 Q \leftarrow \{s\}
```

```
4 while Q \neq \emptyset

5 do u \leftarrow head[Q]

6 for each v \in Adj[u]

(Adj[u] = \{v : (u, v) \in E\}

7 if color[v] = \text{WHITE}
```

```
8 then color[v] \leftarrow GRAY
9 d[v] \leftarrow d[u] + 1
10 \pi[v] \leftarrow u
11 ENQUEUE(Q, v)
```

12 DEQUEUE(Q)13 $color[u] \leftarrow BLACK$

Breadth-First Search Algorithm

Idea of the algorithm:

- \bullet Start at some vertex s
- Vertices are colored:
 - white vertices not yet "discovered"
 - o gray vertices discovered, neighbors not checked
 - black discovered + neighbors checked
- ullet algorithm uses a (FIFO) queue Q to manage the gray vertices
- \bullet initially only s gray
- ullet For each gray vertex v
 - o visit all its neighbors
 - o if they were white, color them gray
 - \circ then color v black
- array color is used to keep track of the color
- for later applications, keep track of
 - $\circ d[u]$ distance from u to s
 - o $\pi[u]$ parent of u in breadth-first tree

6

Running Time of BFS

Initialization (lines 1-4) takes time O(|V|)

• must initialize color, d, π for all vertices

Each vertex gets ENQUEUEd at most once

- only vertices that have just changed from white to gray get ENQUEUEd
- once a vertex becomes gray, it never changes back to white
 - \circ it can't get Enqueued again

Each vertex gets DEQUEUEd at most once.

Each edge (u, v) is processed at most twice at line 6 of BFS-SEARCH:

 \bullet once for u, once for v

Running time is O(|V| + |E|) using the adjacency-list representation.

Properties of BFS

Let $\delta_G(u,v)$ be the shortest-path distance from u to v in G:

• minimum number of edges on a path from u to v

Theorem: After running BFS-Search(s), for every vertex v reachable from s is visited and d[v] = $\delta(s,v)$; for $v \neq s$, $\pi[v]$ is the predecessor of v on a shortest path from s to v.

• This is true for both directed and undirected graphs.

This seems almost obvious from the construction of the algorithm, but we need to be careful when we do a formal proof . . .

9

Proof of Theorem: By Lemma 3, if $\delta(s, v) = \infty$, then v is not discovered.

If $\delta(s,v)=k<\infty$, then we prove by induction on k then there is a point in BFS-SEARCH(s) when we

- \bullet color v gray
- set d[v] = k
- \bullet put v into Q
- if $s \neq v$, then $(\pi[v], v) \in E$ and $d[\pi[v]] = k 1$ Base case: v = s — OK.

Inductive step: Suppose $\delta(s, v) = k + 1$.

- Exists u such that $\delta(s, u) = k$ and $(u, v) \in E$.
- If $\delta(s, u') < k$, then $(u', v) \notin E$.

Induction assumption $\Rightarrow u$ is Enqueued, d[u] = k. We must discover v while processing u, if we haven't discovered it already.

Suppose we discover v while processing u'.

- Either u' = u or we process u' before u
- By Lemma 2, $d[u'] \le d[u] \ (\Rightarrow d[u'] \le k)$
- Since $\delta(s, v) = k + 1$, can't have $\delta(s, u') < k$.
- Thus, d(u') = k, d(v) = k + 1, $\pi(v) = u'$.

Lemma 1: Suppose at some point in BFS-SEARCH[s], $Q = [v_0, \dots, v_k]$. Then there is some i, j such that $d[v_0] = \cdots = d[v_i] = i, \ d[v_{i+1}] = \cdots = d[v_k] = i+1.$

$$d[v_0] = \cdots = d[v_j] = i, \ d[v_{j+1}] = \cdots = d[v_k] = i+1$$

Proof: This is true initially (when $Q = \{s\}$).

The property is maintained after each pass through the loop:

• when we process v_0 , we add white neighbors u of v_0 to the end of Q, with $d[u] = d[v_0] + 1$.

Lemma 2: If we enqueue $v_1, v_2, v_3, \ldots, v_k$ (in that order), then $d[v_1] \leq d[v_2] \leq \ldots$

Proof: Immediate from Lemma 1.

Lemma 3: Every vertex that is "discovered" (colored gray in line 8) is reachable from s.

Proof: Show that this property is maintained on each iteration of the loop. (Formally, by induction on the k, show property holds on kth iteration of loop.)

10

Breadth-First Trees

Let $E_{\pi} = \{ (\pi[v], v) : v \in V, \pi[v] \neq \text{NIL} \}$

• $E_{\pi} \subseteq E$

Proposition: BFS(G) constructs π so that G_{π} = (V, E_{π}) is a forest (set of disjoint trees), whose roots are the vertices s for which we call BFS-SEARCH(s). Moreover, if s is the root of a tree, then v is in the tree iff v is reachable from s, and the path from s to v in the tree is a minimal length path from s to v in G.

Note that this gives us another way of computing the connected components of G if G is undirected.

Depth-First Search

This time we search a graph by following a path as long as possible, then backtracking.

• We use a stack instead of a queue to keep track of gray edges

As we discover vertex u, we timestamp it:

- We timestamp twice:
 - \circ once when we first discover v: d[v]
 - \circ again when we're done with v 's adjacency list: f[v]
 - $\circ v$ is white before d[v], gray between d[v] and f[v], black after f[v]

13

Running Time of DFS

Initialization (lines 1-3) takes time O(|V|).

We call DFS-VISIT at most once for each $u \in V$.

- We call DFS-Visit[u] only when u is white
- u is colored gray as soon as we call DFS-Visit[u]

The total cost of lines 2–5 of DFS-VISIT[u] is O(|Adj[u]|).

The total cost of lines 2–5 of all calls of DFS-Visit is

$$\sum_{u \in V} O(|Adj[u]|) = O(|E|).$$

Total cost of DFS is O(|V| + |E|) (for the adjacency-list representation).

ullet it would be $O(|V|^2)$ for the adjacency-matrix representation

```
for each vertex u \in V(G)
         do color[u] \leftarrow \text{WHITE}
3
             \pi[u] \leftarrow \text{NIL}
4
    time \leftarrow 1
5
    for each vertex u \in V(G)
6
         do if color[u] WHITE
                 then DFS-Visit(u)
7
DFS-Visit(u)
    color[u] \leftarrow GRAY
    d[u] \leftarrow time
    time \leftarrow time + 1
    for each v \in Adj[u]
```

do if color[v] = WHITE

8 $color[u] \leftarrow \text{BLACK}$ 9 $f[u] \leftarrow time$ 10 $time \leftarrow time + 1$

then $\pi[v] \leftarrow u$

DFS(G)

5

6

7

14

DFS-VISIT[v]

Parenthesis Structure

Proposition: DFS(G) constructs π so that $G_{\pi} = (V, E_{\pi})$ is a forest whose roots are the vertices s for which we call DFS-VISIT(s).

The start times and finish times for vertices u form a $parenthesis\ structure$

• either [[d[u], f[u]]] is contained in [[d[v], f[v]]], or they are disjoint.

Parenthesis Theorem: After running DFS(G), for any vertices u and v in V(G), either

- [d[u], f[u]] and [d[v], f[v]] are disjoint • $[d[u], f[u]] \cap [d[v], f[v]] = \emptyset$
- $[d[u], f[u]] \subset [d[v], f[v]]$ and u is a descendant of v in some tree of the depth-first forest
- $[d[v], f[v]] \subset [d[u], f[u]]$ and v is a descendant of u in some tree of the depth-first forest

Proof: Can't have d[u] = d[v]

• whichever one is discovered first must have smaller start time

Suppose d[u] < d[v]

- \bullet if d[v] < f[u], v is discovered while u is still gray
 - \circ must be running DFS-VISIT(u)
 - $\circ v$ is a descendant of u
 - $\circ f(v) < f(u)$
- if d(v) > f(u), intervals must be disjoint

Similar argument if d[v] < d[u].

Corollary: v is a descendant of u in the depth-first forest iff d[u] < d[v] < f[v] < f[u].

17

Topological Sort

A dag (directed acyclic graph) is a directed graph with no cycles.

A topological sort of a dag G = (V, E) is a linear ordering of the vertices in V such that if $(u, v) \in E$, then u < v.

• can't do this if G has a cycle

Suppose the dag G describes a precedence ordering of events

• $(u, v) \in E$ means that u must be done before v

Then a topological sort of G describes one way in which the events can be performed.

• There may be several possible topological sorts of a dag.

19

White Path Theorem: v is a descendant of u in the depth-first forest iff when u is discovered, there is a path from u to v consisting of only white vertices. **Proof:** If v is a descendant of u, let w be any vertex on the path from u to v in the depth-first forest.

- By previous corollary, d[w] > d[u].
- So w must be white at d[u] (w turns gray at d[w]). So there is a path of white vertices from u to v at time d[u].

Conversely, if there is a path from u to v consisting of only white vertices of length k, we prove by induction on k that v is a descendant of u. If k = 1:

- Algorithm guarantees that we must discover v before f[u].
- d[u] < d[v] < f[v] < f[u] (Parenthesis Theorem)
- By Corollary, v is a descendant of u.

If k = k' + 1, consider predecessor w of v on the path.

- w is a descendant of u (induction hyp.)
- By Corollary, d[u] < d[w] < f[w] < f[u].
- Must have d[v] < f[w].
- By Parenthesis Theorem, f[v] < f[w] < f[u].
- By Corollary, v is a descendant of u.

18

Using DFS for Topological Sort

We can use the finishing times of DFS to topologically sort

• vertices with earlier finishing times come later in the list

Topological-Sort(G)

- 1 call DFS(G)
- 2 each time a vertex is finished, insert it onto the front of a linked list
- 3 **return** the linked list

Note: if there are n vertices, it may be better to return an array T[1..n]

- ullet put vertices onto array starting at end
- T[i] is ith vertex in the topological sort

Theorem: Topological-Sort(G) produces a topological sort of G.

Proof: Must show that $(u, v) \in E \Rightarrow f(v) < f(u)$.

Case 1: We turn u gray before v.

- \bullet then we discover v while we are running DFS- Visit(u)
- ullet we finish v before we finish u
- $\bullet \ f(v) < f(u)$

Case 2: We turn v gray before u

- ullet then we don't discover u before we finish v
- \bullet otherwise u is a descendant of v in G and we have a cycle
- so f[v] < d[u] < f[u].