Deletion in Skip Lists

The idea for deletion is similar to that of insertion:

e Use SKIPSEARCH to find the element to be deleted

in SO

o If it’s not there, return “not found”

o Delete the element from Sj, and as many higher

lists as it’s in

Code left as an exercise.

What is the probability that top[S] = h?

A IAIAIA I

Pr(t0p[S] > h)
= Pr(h heads in a row for some element)
< n
— 9oh

E(#items scanned)
Th>1 3h Pr(top[S] = h)
=387 3h Pr(top[S] = h) + Ths315n 3h Pr(top[S] = h)
9lgn =i 8" Pr(top[S] = h) + Shssign 3h Pr(top[S] = h)
9 lgn + Zh>3lgn 3h%
9 lgn + Xh>3nlgn 2%
9lgn + 3n2h>3lgnﬁ [since h < 202 for b > 4]
g + Comia v

[Sh>31gn 5i7 s a geometric series with r = 1/21/2]
9lgn+ O(1/y/n)
O(lgn)

Similar analysis works to show that the expected
running time of SKIPINSERT and SKIPDELETE is
O(lgn)

Probabilistic Analysis of Skip Lists

In the worst case, the coin always lands heads, and
Sy=851=8=--=5

e Then the running time of SKIP-SEARCH is O(n)
This is very unlikely!

Claim: If top[S] = h, then the expected running
time of a SKIPSEARCH is O(h).

Proof: Clearly we move down h times.
How often do we move across when we’re searching

for k7
e Suppose at ith level we move down at position .
e That means key|after(z]] > k.

e Each key beyond x that we scan at level 7 — 1
could not have been put at level 7.

o coin landed tails for that item — probability
1/2

e thus we scan an average of two items at level 1 —1

e F(# items scanned) = 2h (across) + h (down)

Skip Lists: Discussion

Skip lists are a relatively recent innovation.
e that’s why they’re not discussed in CLR
They seem to work very well in practice.
e the code is simple
0 no recursion

e the probabilistic analysis does not depend on the
input being “nice”
e In practice, we seem to do better by using a bi-
ased coin
o probability of heads is, say 1/4

o this means we use fewer pointers

Amortized Complexity

Sometimes we'’re interested not only in the cost of
one operation, but of a sequence of operations.

e E.g.. in a dictionary, a sequence of inserts, deletes,
and searches

Even if each operation in the sequence has expected
cost O(lgn), the expected cost of a sequence of n
operations may be only O(n). Amortized complezity
considers the cost of a sequence of operations.

o If a sequence of n operations takes time O(n),
each one takes O(1) on average

5

Amortized complexity seems appropriate for analyz-
ing the cost of a sequence.

e Can always get an upper bound by considering
the worst-case time for each operation separately,
but may be able to do better

e Read Chapter 18 for more examples

Example: Consider the following algorithm for im-
plementing a queue using two stacks (Exercise 11.1-
6):

e Push every enqueue onto stack 1.
e For a dequeue,

o if stack 2 isn’t empty, then pop an element off
stack 2.

o if stack 2 is empty and stack 1 isn’t, then move
all of stack 1 onto stack 2 and then pop an
element off stack 2.

o if both stacks 1 and 2 are empty — error

Suppose we start with an empty queue and perform
N enqueues and M dequeues

e Claim: this will take at most 2N pushes and at
most N + M pops.

o The amortized complexity: at most 2 pushes

per operation and at most 1 pop

Another example: In homework problem 13.2-4,
you will show that n—1 successive TREE-SUCCESSOR
calls take time O(n), although each one takes ex-
pected time O(lgn) (and worst-case time O(n)).

The Disjoint-Set Data Type

A disjoint-set data type consists of a collection of
disjoint sets Si,...,Sk.

e each set is represented by one of its elements
e the exact element depends on the representation

o xg is the representative element of set S

o S, is the set containing z
Operations on this data type:
e MAKE-SET(z): creates a set {z}

o not a set with a pointer to z (typo in book)

o x can’t be in any of the other sets
o UNION(zg, zg): replace S and S’ by SU S’
e FIND(z): returns zg,if z € S
o Text calls it FIND-SET
Text has a different UNION:
e UNION(z, y): replace S, and S, by S, U S,
o UN10N'(z, y) = UNION(FIND(2),FIND(y))

An application: connected
components

The disjoint-set data type turns out to be very use-
ful in graph algorithms.

One application:

e finding connected components of an undirected
graph.

e testing if two vertices are in the same connected
component.

Recall a graph G = (V, E)
o V = vertices; ' = edges

e an edge e = (v,v')

Quick-Find

Typical implementation of UNION/FIND:
e Assume S U...US, C{1,...,n}

Model sets as doubly-linked lists (with head and tail)
e 5 = head[S)|

Keep an array T'[1..n] such that T[z] = head[S;].

With this implementation:
e FIND takes constant time
o FIND(z) = T[z]
o MAKE-SET takes constant time
o easy to update S and T’
e What about UNION?

11

CONNECTED-COMPONENT(V, E)

1 for each vertex v eV

2 do MAKE-SET(v)

3 for each edge (u,v) € E

4 do if FIND(u) # FIND(v)

5 then UNION(FIND(u),FIND(v))
Complexity:

¢ |V| MAKE-SETs
e 2|E| FINDs
e < |E| UNIONS

SAME-COMPONENT(u, v)

1 if FIND(u) = FIND(v)
2 then return TRUE
3 else return FALSE

Complexity: 2 FINDs

Un1oN/FIND also useful in finding minimum span-
ning tree

10

UNION(zg, zg) could take O(n):
e Combine linked lists S and S’ into one list

oput S at end of S’
o Combining doubly-linked lists is O(1)
o Problem: need to fix the array T'

* Must change pointer for the elements in S
* This could take time O(]S])

Sequence of K MAKE-SETs + M FINDs + N UNIONSs
takes time O(K + M + N?).
enote N < K

It’s not too hard to find a sequence of n operations
that takes time O(n?):

o make n/2 sets: {z1},...,{Ty/2}

e UNION(1,2), UNION(2,3), ..., UNION(n/2—1,n/2)
o After j unions, have {1,...,j5} in S;

e Require 1+ - -+(n/2—1) = O(n?) pointer changes.

12

An improvement

Keep track of |S]|

e easy to do initially 1, [SU S| =|S| + |9
For SU S’, put smaller list at end

¢ this minimizes the number of updates to T
UNION(S, S’) takes time O(min(|S|,|S’])
A sequence of K MAKE-SETs + M FINDs + N
UNIONS takes time O(K + M + NlgN).

Proof: After j UNIONS, biggest N + 1 — j sets have
total size < N + 1. (Proof is by induction on j.)

o After N UNIONS, biggest set has size < N + 1

If an element switches from S to S” after UNION (i.e.,
we put S after S’) it’s because |S'| > |S|

e Thus |[S"U S| > 2|S]
e An element can switch < lg(N + 1) times
Can achieve O(N1g N):

e make n/2 sets then

e Un1ON(1,2), UNION(3,4), ... UNION(n/2—1,n/2)
Un1oN(2,4), UNION(6,8), ...
UNION(4,8), UNION(12,16), . ..

13

FIND(z) returns the root of the tree that contains z
e This takes time O(depth(z))
o depth(z) = length of path from root to z
A sequence of K MAKE-SETs + M FINDs + N
UNIONS takes time O(K + M?%+ N).

It’s not too hard to find a sequence of n operations
that takes time O(n?):

e make n/3 sets: {z1},...,{zy3}
e Un10N(1,2), UNION(2,3), ..., UNION(n/3—1,n/3)

e After j unions, have {1,...,j} in S;, organized
as a tree with one path.
e FIND(1), ..., FIND(n/3) takes time O(n?).

Quick-Union

A different approach that does better with union:
Each set S is represented by a tree (not a linked list)

o the representative element of S is root[S]

o for each node z, have p[z] (parent of z)
o have an array P[1..n], where P[z] = p|z]
o don’t have pointers to children

o for the root, have p[z] = z (p[z] = NIL OK
t00)

With this implementation:
o MAKE-SET takes constant time
e UNION(zg, z5) takes constant time
o have root[S’] be the parent of root[S]
o This gives one tree whose nodes are S U S’
o These are not necessarily binary trees!

e What about FIND?

14

Improving Quick-Union

Two heuristics for improving QUICK-UNION:

e when taking the union, make the root of the tree
with more nodes (actually, of greater rank) the
parent of the other root

o rank > length of longest path from the root to
a leaf
o easy to maintain rank[z] for each node x
o this guarantees the depth is at most lg N
® path compression
o when we do a FIND(z), change the parent of
to the root

o in the process, do the same for every node on
the path from z to the root
x little overhead, since we need to visit these
nodes anyway
* this will amortize the work of changing the
pointers

16

Improved Union-Find: Pseudocode

MAKE-SET(z)

1 plz]«—=z
2 rank[z] =0

UNION(ZL‘5, 115/)
1 if ranklzs] > rank[rs]

2 then plzg]| — s

3 else p[zg] — zg

4 if rank[zg] = rankzg]

5 then rank[zg] = ranklzgs] + 1

FIND(z)

1 if z # pla]
2 then p[z] — FIND(p[z])
3 return p|z]

FIND(z) sets the parent of z to the root, returns the
root, and recursively calls FIND(p[z])

17

Suppose we are given a sequence o of K MAKE-
SET, M FinDp, and N UNION instructions. Let o’
the sequence with all the FINDs deleted.

e there is no path compression in ¢’

Fact 1: After performing ¢/, a node of rank r has
> 2" descendants (including itself).

Proof: Easy argument by induction. The rank of a
node increases only when it acquires all the children
of another node of equal rank as its children.

Fact 2: After performing o, there are at most K/2"
nodes of rank r.

Proof: First consider ¢’/. The rank of a node is >
than the rank of its children.

e Subtrees of two nodes of rank r must be disjoint
e Each subtree has 2" nodes, so at most K /2"

Performing FIND doesn’t affect the rank, so the re-
sult is also true for o.

Fact 3: The highest rank is <lg K.

Fact 4: After performing o, the rank of a node is >
than the rank of its children.

Proof: Obvious for ¢/. Path compression doesn’t
change this fact.

19

Analysis of Union/Find

Define
F0) =1
F(i+1) = 2F® fori >0

Have

F(1)=2

F(2)=2F0 =4

F(3) =2F® = 24 =16

F(4) = 2FG) = 216 — 65,536

F(5) =2F® = 265 536 = a very big number
lg (n) = least k such that n < F(k)

lg*(n) < 5 if n < 265536

Theorem: A sequence of K MAKE-SETs + M FINDs
+ N Unions takes time O((K + M)1g"(K) + N).

Bottom line: Amortized cost of each operation is
essentially constant!

The next four slides cover the proof of the theorem.

® You’re not responsible for it, although you may
find it interesting

18

The cost of FIND(z) is the number of nodes on the
path from z to the root.

o if we perform FIND(z) again, the cost is 1
How do we keep track of the changing costs?
o Need some accounting gimmmicks

o each time we visit a node during a FIND, we
charge either a Canadian or an American penny

o At the end, the total number of pennies is the
total running time of the FINDs

Partition the ranks into groups:

e Group g consists of all nodes of rank F(g—1)+1
to F(g); group 0 consists of nodes of rank 1.

e Since the highest rank is lg K, there are at most
lg*(lg K) + 1 = 1g*(K) groups.
Fancy accounting for FIND(z)

e If = or z’s parent is the root, or z’s parent is in
a different group from z, charge x one Canadian

penny

e Otherwise, charge z one American penny.

20

Fact 5: After o, we have been charged at most
M(2 4+ 1g" K) Canadian pennies.

Proof: For any FIND, as we go up the path, we
charge 2 for the root and the child of the root, + 1
for each time we change groups. There are < lg* K
groups. Thus, charge < 2 + 1g* K Canadian pennies
for each of M FINDs.

Fact 6: If z is in group g, then at most F(g) Amer-
ican pennies are put at node z.

Proof: Each time we charge £ an American penny,
we do path compression, and x gets a parent of
higher rank. After F(g) compressions, z’s parent
must be in a different group, and we don’t charge
American pennies any more.

Fact 7: There are at most N(g) = K/27~1 nodes
in group g.
Proof: There are < N/2" nodes of rank r. Therefore
N(g) Ef:(%)'(gfl)+1 Nj2
N2 pgay 1/2
2N

F(g—1)+1
2 N

I IAIA

9F(g-1)

Fact 8: At most KF(g)/27¢~Y) = K American pen-
nies are charged at nodes in group g.

21

Fact 9: At most K lg* K American pennies are charged
altogether.

Fact 10: At most (K + M)lg" K + 2M pennies are
charged altogether.

Thus, the total cost of M FINDs (after K MAKE-
SETs) is (K + M)1g" K.

22

