Deletion in Skip Lists

The idea for deletion is similar to that of insertion:

- \bullet Use SkipSearch to find the element to be deleted in S_0
 - If it's not there, return "not found"
- Delete the element from S_0 , and as many higher lists as it's in

Code left as an exercise.

What is the probability that top[S] = h?

$$\begin{array}{l} \Pr(top[S] \geq h) \\ = \Pr(h \text{ heads in a row for some element}) \\ \leq \frac{n}{2^h} \end{array}$$

```
\begin{split} &E(\# \text{items scanned}) \\ &= \Sigma_{h\geq 1} \, 3h \, \Pr(top[S] = h) \\ &= \Sigma_{h=1}^{3\lg n} \, 3h \, \Pr(top[S] = h) + \Sigma_{h>3\lg n} \, 3h \, \Pr(top[S] = h) \\ &\leq 9 \lg n \, \Sigma_{h=1}^{3\lg n} \, \Pr(top[S] = h) + \Sigma_{h>3\lg n} \, 3h \, \Pr(top[S] = h) \\ &\leq 9 \lg n + \Sigma_{h>3\lg n} \, 3h \frac{n}{2h} \\ &\leq 9 \lg n + \Sigma_{h>3n\lg n} \, 3h \frac{n}{2h} \\ &\leq 9 \lg n + 3n \, \Sigma_{h>3\lg n} \, \frac{1}{2h/2} \, \left[ \text{since } h \leq 2^{h/2} \text{ for } h \geq 4 \right] \\ &= 9 \lg n + \frac{3n}{(n^{3/2})(1-(1/\sqrt{2}))} \\ &= \left[ \Sigma_{h>3\lg n} \, \frac{1}{2^{h/2}} \, \text{is a geometric series with } r = 1/2^{1/2} \right] \\ &= 9 \lg n + O(1/\sqrt{n}) \\ &= O(\lg n) \end{split}
```

Similar analysis works to show that the expected running time of SKIPINSERT and SKIPDELETE is $O(\lg n)$

3

Probabilistic Analysis of Skip Lists

In the worst case, the coin always lands heads, and $S_0 = S_1 = S_2 = \cdots = S_h$

• Then the running time of SKIP-SEARCH is O(n)

This is very unlikely!

Claim: If top[S] = h, then the expected running time of a SKIPSEARCH is O(h).

Proof: Clearly we move down h times. How often do we move across when we're searching for k?

- Suppose at ith level we move down at position x.
- That means key[after[x]] > k.
- Each key beyond x that we scan at level i-1 could not have been put at level i.
 - \circ coin landed tails for that item probability 1/2
- thus we scan an average of two items at level i-1
- E(# items scanned) = 2h (across) + h (down)

2

Skip Lists: Discussion

Skip lists are a relatively recent innovation.

- \bullet that's why they're not discussed in CLR
- They seem to work very well in practice.
- the code is simple
 - o no recursion
- the probabilistic analysis does not depend on the input being "nice"
- In practice, we seem to do better by using a biased coin
 - o probability of heads is, say 1/4
 - o this means we use fewer pointers

Amortized Complexity

Sometimes we're interested not only in the cost of one operation, but of a *sequence* of operations.

 E.g., in a dictionary, a sequence of inserts, deletes, and searches

Even if each operation in the sequence has expected cost $O(\lg n)$, the expected cost of a sequence of n operations may be only O(n). Amortized complexity considers the cost of a sequence of operations.

• If a sequence of n operations takes time O(n), each one takes O(1) on average

5

Amortized complexity seems appropriate for analyzing the cost of a sequence.

- Can always get an upper bound by considering the worst-case time for each operation separately, but may be able to do better
- Read Chapter 18 for more examples

Example: Consider the following algorithm for implementing a queue using two stacks (Exercise 11.1-6):

- Push every enqueue onto stack 1.
- For a dequeue,
 - if stack 2 isn't empty, then pop an element off stack 2.
 - o if stack 2 is empty and stack 1 isn't, then move all of stack 1 onto stack 2 and then pop an element off stack 2.
 - \circ if both stacks 1 and 2 are empty \rightarrow error

Suppose we start with an empty queue and perform N enqueues and M dequeues

- Claim: this will take at most 2N pushes and at most N + M pops.
 - The amortized complexity: at most 2 pushes per operation and at most 1 pop

Another example: In homework problem 13.2-4, you will show that n-1 successive TREE-SUCCESSOR calls take time O(n), although each one takes expected time $O(\lg n)$ (and worst-case time O(n)).

6

The Disjoint-Set Data Type

A disjoint-set data type consists of a collection of disjoint sets S_1, \ldots, S_k .

- each set is represented by one of its elements
- the exact element depends on the representation
 - $\circ x_S$ is the representative element of set S
 - $\circ S_x$ is the set containing x

Operations on this data type:

- Make-Set(x): creates a set $\{x\}$
 - \circ not a set with a pointer to x (typo in book)
 - $\circ x$ can't be in any of the other sets
- Union $(x_S, x_{S'})$: replace S and S' by $S \cup S'$
- FIND(x): returns x_S , if $x \in S$
 - Text calls it FIND-SET

Text has a different Union:

- Union'(x, y): replace S_x and S_y by $S_x \cup S_y$
 - \circ Union'(x, y) = Union(Find(x),Find(y))

7

An application: connected components

The disjoint-set data type turns out to be very useful in graph algorithms.

One application:

- finding connected components of an undirected graph.
- testing if two vertices are in the same connected component.

Recall a graph G = (V, E)

- V = vertices; E = edges
- an edge e = (v, v')

9

Quick-Find

Typical implementation of Union/Find:

• Assume $S_1 \cup \ldots \cup S_k \subseteq \{1, \ldots, n\}$

Model sets as doubly-linked lists (with head and tail)

 $\bullet x_S = head[S]$

Keep an array T[1..n] such that $T[x] = head[S_x]$.

With this implementation:

- FIND takes constant time
 - $\circ \operatorname{Find}(x) = T[x]$
- Make-Set takes constant time
 easy to update S and T
- What about Union?

CONNECTED-COMPONENT(V, E)

1 for each vertex $v \in V$ 2 do Make-Set(v) 3 for each edge $(u, v) \in E$ 4 do if Find(u) \neq Find(v) 5 then Union(Find(u),Find(v))

Complexity:

- |V| Make-Sets
- 2|E| Finds
- $\leq |E|$ Unions

Same-Component(u, v)

1 **if** FIND(u) = FIND(v)

2 then return TRUE

3 else return FALSE

Complexity: 2 Finds

UNION/FIND also useful in finding minimum spanning tree

10

UNION $(x_S, x_{S'})$ could take O(n):

- \bullet Combine linked lists S and S' into one list
 - \circ put S at end of S'
 - \circ Combining doubly-linked lists is O(1)
 - \circ Problem: need to fix the array T
 - * Must change pointer for the elements in S
 - * This could take time O(|S|)

Sequence of K MAKE-SETS + M FINDS + N UNIONS takes time $O(K + M + N^2)$.

• note N < K

It's not too hard to find a sequence of n operations that takes time $O(n^2)$:

- make n/2 sets: $\{x_1\}, \ldots, \{x_{n/2}\}$
- Union(1,2), Union(2,3), ..., Union(n/2-1,n/2)
- After j unions, have $\{1, \ldots, j\}$ in S_j
- Require $1+\cdots+(n/2-1)=O(n^2)$ pointer changes.

11

12

An improvement

Keep track of |S|

• easy to do – initially 1, $|S \cup S'| = |S| + |S'|$

For $S \cup S'$, put smaller list at end

• this minimizes the number of updates to TUNION(S, S') takes time $O(\min(|S|, |S'|)$

A sequence of K Make-Sets + M Finds + N Unions takes time $O(K + M + N \lg N)$.

Proof: After j Unions, biggest N+1-j sets have total size $\leq N+1$. (Proof is by induction on j.)

- After N Unions, biggest set has size $\leq N+1$ If an element switches from S to S' after Union (i.e., we put S after S') it's because $|S'| \geq |S|$
 - Thus $|S' \cup S| \ge 2|S|$
 - \bullet An element can switch $\leq \lg(N+1)$ times

Can achieve $O(N \lg N)$:

- make n/2 sets then
- UNION(1,2), UNION(3,4), ... UNION(n/2-1, n/2) UNION(2,4), UNION(6,8), ... UNION(4,8), UNION(12,16), ...

13

FIND(x) returns the root of the tree that contains x

- This takes time O(depth(x))
 - \circ depth(x) = length of path from root to x

A sequence of K Make-Sets + M Finds + NUnions takes time $O(K + M^2 + N)$.

It's not too hard to find a sequence of n operations that takes time $O(n^2)$:

- make n/3 sets: $\{x_1\}, \ldots, \{x_{n/3}\}$
- UNION(1,2), UNION(2,3), ..., UNION(n/3-1,n/3)
- After j unions, have $\{1, \ldots, j\}$ in S_j , organized as a tree with one path.
- FIND(1), ..., FIND(n/3) takes time $O(n^2)$.

Quick-Union

A different approach that does better with union: Each set S is represented by a tree (not a linked list)

- the representative element of S is root[S]
- for each node x, have p[x] (parent of x)
 - \circ have an array P[1..n], where P[x] = p[x]
 - o don't have pointers to children
 - \circ for the root, have p[x] = x (p[x] = NIL OK too)

With this implementation:

- Make-Set takes constant time
- Union $(x_S, x_{S'})$ takes constant time
 - \circ have root[S'] be the parent of root[S]
 - \circ This gives one tree whose nodes are $S \cup S'$
 - These are not necessarily binary trees!
- What about Find?

14

Improving Quick-Union

Two heuristics for improving Quick-Union:

- when taking the union, make the root of the tree with more nodes (actually, of greater *rank*) the parent of the other root
 - \circ rank \geq length of longest path from the root to a leaf
 - \circ easy to maintain rank[x] for each node x
 - \circ this guarantees the depth is at most $\lg N$
- path compression
 - when we do a FIND(x), change the parent of x to the root
 - \circ in the process, do the same for every node on the path from x to the root
 - * little overhead, since we need to visit these nodes anyway
 - * this will amortize the work of changing the pointers

Improved Union-Find: Pseudocode

```
Make-Set(x)
1 \quad p[x] \leftarrow x
2 \quad rank[x] = 0
Union(x<sub>S</sub>, x<sub>S'</sub>)
1 \quad \text{if } rank[x_S] > rank[x_{S'}]
2 \quad \text{then } p[x_{S'}] \leftarrow x_S
3 \quad \text{else } p[x_S] \leftarrow x_{S'}
4 \quad \text{if } rank[x_S] = rank[x_{S'}]
5 \quad \text{then } rank[x_{S'}] = rank[x_{S'}] + 1
```

FIND(x)

1 if $x \neq p[x]$ 2 then $p[x] \leftarrow \text{FIND}(p[x])$ 3 return p[x]

FIND(x) sets the parent of x to the root, returns the root, and recursively calls FIND(p[x])

17

Suppose we are given a sequence σ of K Make-Set, M Find, and N Union instructions. Let σ' the sequence with all the Finds deleted.

• there is no path compression in σ'

Fact 1: After performing σ' , a node of rank r has $\geq 2^r$ descendants (including itself).

Proof: Easy argument by induction. The rank of a node increases only when it acquires all the children of another node of equal rank as its children.

Fact 2: After performing σ , there are at most $K/2^r$ nodes of rank r.

Proof: First consider σ' . The rank of a node is > than the rank of its children.

- \bullet Subtrees of two nodes of rank r must be disjoint
- Each subtree has 2^r nodes, so at most $K/2^r$

Performing FIND doesn't affect the rank, so the result is also true for σ .

Fact 3: The highest rank is $\leq \lg K$.

Fact 4: After performing σ , the rank of a node is > than the rank of its children.

Proof: Obvious for σ' . Path compression doesn't change this fact.

Analysis of Union/Find

Define

$$F(0) = 1$$

 $F(i+1) = 2^{F(i)}$ for $i \ge 0$

Have

$$\begin{split} F(1) &= 2 \\ F(2) &= 2^{F(1)} = 4 \\ F(3) &= 2^{F(2)} = 2^4 = 16 \\ F(4) &= 2^{F(3)} = 2^{16} = 65,536 \\ F(5) &= 2^{F(4)} = 2^{65,536} = \text{a very big number} \end{split}$$

$$\lg^*(n) = \text{least } k \text{ such that } n \le F(k)$$

 $\lg^*(n) \le 5 \text{ if } n \le 2^{65,536}$

Theorem: A sequence of K MAKE-SETS + M FINDS + N UNIONS takes time $O((K + M) \lg^*(K) + N)$.

Bottom line: Amortized cost of each operation is essentially constant!

The next four slides cover the proof of the theorem.

• You're not responsible for it, although you may find it interesting

18

The cost of FIND(x) is the number of nodes on the path from x to the root.

• if we perform FIND(x) again, the cost is 1

How do we keep track of the changing costs?

- Need some accounting gimmmicks
 - each time we visit a node during a FIND, we charge either a Canadian or an American penny
 - At the end, the total number of pennies is the total running time of the FINDS

Partition the ranks into *groups*:

- Group g consists of all nodes of rank F(g-1)+1 to F(g); group 0 consists of nodes of rank 1.
- Since the highest rank is $\lg K$, there are at most $\lg^*(\lg K) + 1 = \lg^*(K)$ groups.

Fancy accounting for FIND(x)

- If x or x's parent is the root, or x's parent is in a different group from x, charge x one Canadian penny
- \bullet Otherwise, charge x one American penny.

Fact 5: After σ , we have been charged at most $M(2 + \lg^* K)$ Canadian pennies.

Proof: For any FIND, as we go up the path, we charge 2 for the root and the child of the root, + 1 for each time we change groups. There are $\leq \lg^* K$ groups. Thus, charge $\leq 2 + \lg^* K$ Canadian pennies for each of M FINDs.

Fact 6: If x is in group g, then at most F(g) American pennies are put at node x.

Proof: Each time we charge x an American penny, we do path compression, and x gets a parent of higher rank. After F(q) compressions, x's parent must be in a different group, and we don't charge American pennies any more.

Fact 7: There are at most $N(g) = K/2^{F(g-1)}$ nodes in group g.

Proof: There are $\leq N/2^r$ nodes of rank r. Therefore

$$\begin{array}{l} N(g) \, \leq \, \mathop{\Sigma_{r=F(g-1)+1}^{F(g)} N/2^r} \\ \leq \, N\mathop{\Sigma_{r=F(g-1)+1}^{\infty} 1/2^r} \\ = \, \frac{2N}{2^F(g-1)+1} \\ = \, \frac{N}{2^F(g-1)} \end{array}$$

Fact 8: At most $KF(g)/2^{F(g-1)} = K$ American pennies are charged at nodes in group g.

Fact 9: At most $K \lg^* K$ American pennies are charged altogether.

Fact 10: At most $(K+M)\lg^*K+2M$ pennies are charged altogether.

Thus, the total cost of M FINDs (after K Make-SETs) is $(K + M) \lg^* K$.