Binary Search Trees

Heaps are good for insertion, deletion, searching.
Priority heaps are good for minimum/maximum.

Binary search trees (BSTs) are a useful data struc-
ture to implement dictionary operations, min, max,
successor, predecessor.

e basic operations take time O(height tree)
e randomly built BST with n nodes has height lg(n)
e lots of other variants

o red-black trees (guaranteed to have height lg(n))
o AVL trees (also guaranteed to have height lg(n))

o B-trees (used extensively in databases; have
large outdegree and smaller height)

o splay trees
o persistent trees

e The great number of variants is an indication of
the importance of BSTs.

Searching a Binary Search Tree

Searching is easy because of the BST property:
TREE-SEARCH(z, k) [z is a pointer to a node]

1 if x = NIL or k = key|z]

2 then return x

3 if k < key[z]

4 then return TREE-SEARCH(left[z], k)
5 else return TREE-SEARCH(right[z], k)

e This tells us whether k appears in the subtree
rooted at z

e running time: O(h(x)), where h(z) is the height
of x

Here is a non-recursive version:
ITERATIVE-TREE-SEARCH(z, k)

1 while z # NIL and k # key|z]
2 do if k < key|z]

3 then z — left[z]

4 else = «— right[z]

5 return x

The Binary-Search Tree Property

A binary search tree is a binary tree where each node
has key, parent, left child, right child

e p[z] = NIL for the root

o left[z], right[z] may be NIL
The keys must satisfy the binary-search-tree (BST)
property:

If y is a node in the left subtree of z, then
keyly] < key|z]
If y is a node in the right subtree of z, then
keyly] > key[z]

Note: This property makes sense only if the keys
are totally ordered

Minimum and maximum

Min and max are easy: just go all the way to the
left /right:

TREE-MINIMUM(z) [z is a pointer to a node]

1 while left[x] # NIL
2 do z — left[z]

3 return z

TREE-MAXIMUM(z)

1 while right[z] # NIL
2 do = «— right[z]
3 return x

Successor and Predecessor

The successor of = is the element with the next-
biggest key

e May want successor if you want to list keys in
increasing order

e Again, this makes sense only if keys are totally
ordered
Where is the successor of z located?

1. If = has a right child, then it’s the leftmost node
of the subtree rooted at the right child.

e Clearly this is the successor of z in the subtree
rooted at x

e Work up the tree by induction from z to show
that this remains true

2. If z has no right child, and z is the left child of
its parent, then the successor is the parent

e Again, need to argue by induction up the tree
that this is right

3. If x is the right child of its parent, find the lowest
ancestor of z which is the left child of its parent

5

Insertion

Inserting z is straightforward:
e We insert z at a leaf
e Figure out which one by starting at the root and

making comparisons

TREE-INSERT(T, 2)

1 y « NIL

2 z « root[T) [y is the parent of z]
3 while x # NIL

4 doy+« =z

5 if key[z] < keylx]

6 then z « left[z]

7 else © — right[z]

8 plz] —y

9 if y = NIL

10 then root[T] — z

11 else if key[z] < key[y]
12 then leftly] — =z
13 else right[y] «— z

Insertion clearly runs in time O(h)

7

TREE-SUCCESSOR(z)

1 if right[z] # NIL

2 then return TREE-MINIMUM(right[z])
3y« pla]

4 while y # NIL and = = right[y]

5 dozx «—vy

6

7

y < ply]
return y

e TREE-PREDECESSOR works the same way
e Both run in time O(h):

o We either go up the tree or down the tree

Deletion in BSTs

Deleting z is the trickiest operation. There are three
cases:

1. z has no children: easy — just delete z

2. z has one child: easy — delete z; child of z becomes
child of z’s parent

e we still maintain the BST property
3. if z has two children

e Find 2’s successor 2’

o this will be the leftmost element in the sub-
tree rooted at right[z]

e recursively delete 2’

o this is easy because 2’ has at most one child
(no left child)

e Replace z by 2/
e This maintains the BST property

TREE-DELETE(T, z)

1 if left[z] = NIL or right[z] = NIL
2 then y « z
3 else y — TREE-SUCCESSOR|Z]
[y is the node that gets spliced out]
4 if leftly] # NIL
5 then z «— lefi[y]
6 else z «— right[y]
[z is the unique successor of y (or NIL)]
7 if x # NIL
8 then p[z] < ply]
9 if ply] = NIL
10 then roof[T] — z
11 else if y = left[p[y]]

12 then leftp[y]] — =
13 else right[ply]] — =
14 if y # =z

15 keylz] < keyly]
[also copy other fields, if there are any)]

Again, the running time is O(h).

Using a BST for Sorting

Can sort using a BST by doing an inorder traversal
o first left subtree, then root, then right subtree

INORDER-TREE-WALK(z) [walk through subtree
rooted at z]

1 if x # NIL

2 then INORDER-TREE-WALK(left[z])
3 print key[z]

4 INORDER-TREE- WALK(right[z])

Analysis: first need to build the BST by inserting
elements to be sorted. This takes expected time

O(lg(1)) +---+ O(lgn) = O(nlgn)
The tree walk then takes time O(n).

11

The Height of a Random BST

All the algorithms run in time O(h).
What’s h for an n-node tree?
e best case: lg(n) — if the tree is perfectly balanced

e worst case: O(n) — if the tree is completely un-
balanced

What can we expect on average?

Let’s assume the tree is built up by starting with an
empty tree and inserting n elements.

e it’s very hard to analyze what happens if we have
inserts + deletes

o deletes could unbalance a tree—if a node has
two children, we delete from the right subtree.

If the n elements are in increasing or decreasing or-
der, then we have a completely unbalanced tree.

e This can be a serious problem in practice
e Running time O(n) is not acceptable
e Red-black trees solve that problem

If all the n! permutations of the trees are equally
likely, then the expected height of the tree is O(lgn).

10

Balanced Search Trees

The BSTs just presented only have expected height
O(lgn). There are a number of variants which are
guaranteed to have height O(lgn):

o red-black trees (CLR; Chapter 14)
o AVL trees
o . ..

Keeping the tree balanced requires (lots of) addi-
tional overhead, although the basic ideas remain the
same.

12

Skip Lists

This material is NOT in the text.
e There is a handout

Skip lists support dictionary operations, min, max,
successor, predecessor.

e These operations have expected running time O(lgn)

e Worst-case time can be O(n)
e Advantages:

o very simple to code (much simpler than fancy
balanced BSTs)

o algorithm tosses coins, so expected running
time is independent of actual list

* unlike BST's

13

Searching a Skip List

Why do we bother repeating the elements in a skip-
list?

e Because it makes searching, inserting, deleting,
etc. faster!

Idea in searching for k:
e start at the top level (S),), and find largest k' < k
e then go down one level and repeat

e if we don’t hit k£ by Sy, it’s not there

Given a set X of elements, a skip list S for X consists
of a set {Sp, ..., Sy} of subsets of X:

e each S; is implemented as a doubly-linked list

e Sy consists of all the elements of S, in sorted or-
der, + two special elements —oo and 400

e S;.1 is a subset of S;, again in sorted order

0 S;4+1 must have 400 and —oo
o typically S;41 is about half the size of S;
o ideally S;;1 has every other element in S;
* exact size depends on the coin tosses
o Sp = {—o00,+00}
* typically h is about lgn
* hardly ever > 3lgn (can make sure of this)
o have links up and down from corresponding
elements in S; and S;;1

o Skip list S has operations after, before, above,
below

o top[S]=h

14

SKIPSEARCH(S, k)

e returns z in Sy such that key[z] is greatest key in

S <k
o if key[z] # k, then k is not in S

i« top[S] [top[S] is highest level of S]
x — tail[S;]
while i # —1
do if keylafter[z]] < k
then z — after|z]
else ifi#0
then z « below[z]
1—1—1

© 00 O U i W N =

return

16

Insertion in Skip Lists

Suppose we want to insert item x with key k into
the skip list.

Two problems:
1. which lists do we put it into
e S for sure. How about S;? Sy?
2. How do we find the right place to put it quickly?
Solutions:
1. Decide probabilistically: toss a coin.

o If it lands heads, put it in S;
e If it lands heads again, put it in Sy

e quit tossing if coin lands tails
2. Do SKIPSEARCH to find the right place quickly

We implement a coin toss by calling RANDOM(), which
returns a number in [0, 1)

e coin lands heads if RANDOM() < 1/2

17

SKIPINSERT(.S, z)

1 k<« key[z]

2 y < SKIP-SEARCH(S, k)

3 Insert z after y in S

4 10

5 while RANDOM() < 1/2

6 do while above[y] = NIL and key[y] # —oo
7 do y < before[y]
8 1+—1+1

9 if i > top[S]

10 then top[S] « i
11 initialize S;
12 y «— above[y]

13 Insert x after y in .S;

[fix before, after, above, below]
Running time = time of SKIPSEARCH + O(top[S])

e Need to show that SKIPSEARCH runs in expected
time O(lgn)

e Also need to show that the expected number of
backtracks before above[y] # NIL is constant.

As written, top[S] could grow unboundedly
o this is extremely unlikely — requires lots of heads

Could stop top[S] at 3lgn.

18

