Binary Search Trees

Heaps are good for insertion, deletion, searching.
Priority heaps are good for minimum/maximum.

Binary search trees (BSTs) are a useful data struc-
ture to implement dictionary operations, min, max,
successor, predecessor.

e basic operations take time O(height tree)
e randomly built BST with n nodes has height lg(n)
e lots of other variants

o red-black trees (guaranteed to have height lg(n))
o AVL trees (also guaranteed to have height lg(n))

o B-trees (used extensively in databases; have
large outdegree and smaller height)

o splay trees
o persistent trees

e The great number of variants is an indication of
the importance of BSTs.

Searching a Binary Search Tree

Searching is easy because of the BST property:
TREE-SEARCH(z, k) [z is a pointer to a node]

1 if x = NIL or k = key|z]

2  then return x

3 if k < key[z]

4  then return TREE-SEARCH(left[z], k)
5  else return TREE-SEARCH(right[z], k)

e This tells us whether k appears in the subtree
rooted at z

e running time: O(h(x)), where h(z) is the height
of x

Here is a non-recursive version:
ITERATIVE-TREE-SEARCH(z, k)

1 while z # NIL and k # key|z]
2 do if k < key|z]

3 then z — left[z]

4 else = «— right[z]

5 return x

The Binary-Search Tree Property

A binary search tree is a binary tree where each node
has key, parent, left child, right child

e p[z] = NIL for the root

o left[z], right[z] may be NIL
The keys must satisfy the binary-search-tree (BST)
property:

If y is a node in the left subtree of z, then
keyly] < key|z]
If y is a node in the right subtree of z, then
keyly] > key[z]

Note: This property makes sense only if the keys
are totally ordered

Minimum and maximum

Min and max are easy: just go all the way to the
left /right:

TREE-MINIMUM(z) [z is a pointer to a node]

1 while left[x] # NIL
2 do z — left[z]

3 return z

TREE-MAXIMUM(z)

1 while right[z] # NIL
2 do = «— right[z]
3 return x



Successor and Predecessor

The successor of = is the element with the next-
biggest key

e May want successor if you want to list keys in
increasing order

e Again, this makes sense only if keys are totally
ordered
Where is the successor of z located?

1. If = has a right child, then it’s the leftmost node
of the subtree rooted at the right child.

e Clearly this is the successor of z in the subtree
rooted at x

e Work up the tree by induction from z to show
that this remains true

2. If z has no right child, and z is the left child of
its parent, then the successor is the parent

e Again, need to argue by induction up the tree
that this is right

3. If x is the right child of its parent, find the lowest
ancestor of z which is the left child of its parent
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Insertion

Inserting z is straightforward:
e We insert z at a leaf
e Figure out which one by starting at the root and

making comparisons

TREE-INSERT(T, 2)

1 y « NIL

2 z « root[T) [y is the parent of z]
3 while x # NIL

4 doy+« =z

5 if key[z] < keylx]

6 then z « left[z]

7 else © — right[z]

8 plz] —y

9 if y = NIL

10 then root[T] — z

11 else if key[z] < key[y]
12 then leftly] — =z
13 else right[y] «— z

Insertion clearly runs in time O(h)
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TREE-SUCCESSOR(z)

1 if right[z] # NIL

2 then return TREE-MINIMUM(right[z])
3y« pla]

4 while y # NIL and = = right[y]

5 dozx «—vy
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y < ply]
return y

e TREE-PREDECESSOR works the same way
e Both run in time O(h):

o We either go up the tree or down the tree

Deletion in BSTs

Deleting z is the trickiest operation. There are three
cases:

1. z has no children: easy — just delete z

2. z has one child: easy — delete z; child of z becomes
child of z’s parent

e we still maintain the BST property
3. if z has two children

e Find 2’s successor 2’

o this will be the leftmost element in the sub-
tree rooted at right[z]

e recursively delete 2’

o this is easy because 2’ has at most one child
(no left child)

e Replace z by 2/
e This maintains the BST property



TREE-DELETE(T, z)

1 if left[z] = NIL or right[z] = NIL
2 then y « z
3 else y — TREE-SUCCESSOR|Z]
[y is the node that gets spliced out]
4 if leftly] # NIL
5 then z «— lefi[y]
6 else z «— right[y]
[z is the unique successor of y (or NIL)]
7 if x # NIL
8  then p[z] < ply]
9 if ply] = NIL
10  then roof[T] — z
11 else if y = left[p[y]]

12 then leftp[y]] — =
13 else right[ply]] — =
14 if y # =z

15 keylz] < keyly]
[also copy other fields, if there are any)]

Again, the running time is O(h).

Using a BST for Sorting

Can sort using a BST by doing an inorder traversal
o first left subtree, then root, then right subtree

INORDER-TREE-WALK(z) [walk through subtree
rooted at z]

1 if x # NIL

2 then INORDER-TREE-WALK(left[z])
3 print key[z]

4 INORDER-TREE- WALK(right[z])

Analysis: first need to build the BST by inserting
elements to be sorted. This takes expected time

O(lg(1)) +---+ O(lgn) = O(nlgn)
The tree walk then takes time O(n).
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The Height of a Random BST

All the algorithms run in time O(h).
What’s h for an n-node tree?
e best case: lg(n) — if the tree is perfectly balanced

e worst case: O(n) — if the tree is completely un-
balanced

What can we expect on average?

Let’s assume the tree is built up by starting with an
empty tree and inserting n elements.

e it’s very hard to analyze what happens if we have
inserts + deletes

o deletes could unbalance a tree—if a node has
two children, we delete from the right subtree.

If the n elements are in increasing or decreasing or-
der, then we have a completely unbalanced tree.

e This can be a serious problem in practice
e Running time O(n) is not acceptable
e Red-black trees solve that problem

If all the n! permutations of the trees are equally
likely, then the expected height of the tree is O(lgn).
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Balanced Search Trees

The BSTs just presented only have expected height
O(lgn). There are a number of variants which are
guaranteed to have height O(lgn):

o red-black trees (CLR; Chapter 14)
o AVL trees
o . ..

Keeping the tree balanced requires (lots of) addi-
tional overhead, although the basic ideas remain the
same.
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Skip Lists

This material is NOT in the text.
e There is a handout

Skip lists support dictionary operations, min, max,
successor, predecessor.

e These operations have expected running time O(lgn)

e Worst-case time can be O(n)
e Advantages:

o very simple to code (much simpler than fancy
balanced BSTs)

o algorithm tosses coins, so expected running
time is independent of actual list

* unlike BST's
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Searching a Skip List

Why do we bother repeating the elements in a skip-
list?

e Because it makes searching, inserting, deleting,
etc. faster!

Idea in searching for k:
e start at the top level (S),), and find largest k' < k
e then go down one level and repeat

e if we don’t hit k£ by Sy, it’s not there

Given a set X of elements, a skip list S for X consists
of a set {Sp, ..., Sy} of subsets of X:

e each S; is implemented as a doubly-linked list

e Sy consists of all the elements of S, in sorted or-
der, + two special elements —oo and 400

e S;.1 is a subset of S;, again in sorted order

0 S;4+1 must have 400 and —oo
o typically S;41 is about half the size of S;
o ideally S;;1 has every other element in S;
* exact size depends on the coin tosses
o Sp = {—o00,+00}
* typically h is about lgn
* hardly ever > 3lgn (can make sure of this)
o have links up and down from corresponding
elements in S; and S;;1

o Skip list S has operations after, before, above,
below

o top[S]=h
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SKIPSEARCH(S, k)

e returns z in Sy such that key[z] is greatest key in

S <k
o if key[z] # k, then k is not in S

i« top[S] [top[S] is highest level of S]
x — tail[S;]
while i # —1
do if keylafter[z]] < k
then z — after|z]
else ifi#0
then z « below[z]
1—1—1

© 00 O U i W N =

return
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Insertion in Skip Lists

Suppose we want to insert item x with key k into
the skip list.

Two problems:
1. which lists do we put it into
e S for sure. How about S;? Sy?
2. How do we find the right place to put it quickly?
Solutions:
1. Decide probabilistically: toss a coin.

o If it lands heads, put it in S;
e If it lands heads again, put it in Sy

e quit tossing if coin lands tails
2. Do SKIPSEARCH to find the right place quickly

We implement a coin toss by calling RANDOM(), which
returns a number in [0, 1)

e coin lands heads if RANDOM() < 1/2
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SKIPINSERT(.S, z)

1 k<« key[z]

2 y < SKIP-SEARCH(S, k)

3 Insert z after y in S

4 10

5 while RANDOM() < 1/2

6 do while above[y] = NIL and key[y] # —oo
7 do y < before[y]
8 1+—1+1

9 if i > top[S]

10 then top[S] « i
11 initialize S;
12 y «— above[y]

13 Insert x after y in .S;

[fix before, after, above, below]
Running time = time of SKIPSEARCH + O(top[S])

e Need to show that SKIPSEARCH runs in expected
time O(lgn)

e Also need to show that the expected number of
backtracks before above[y] # NIL is constant.

As written, top[S] could grow unboundedly
o this is extremely unlikely — requires lots of heads

Could stop top[S] at 3lgn.
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