Binary Search Trees

Heaps are good for insertion, deletion, searching.
Priority heaps are good for minimum /maximum.

Binary search trees (BSTs) are a useful data struc-
ture to implement dictionary operations, min, max,
successor, predecessor.

e basic operations take time O(height tree)
e randomly built BST with n nodes has height lg(n)
e lots of other variants

o red-black trees (guaranteed to have height 1g(n))
o AVL trees (also guaranteed to have height 1g(n))

o B-trees (used extensively in databases; have
large outdegree and smaller height)

o splay trees
o persistent trees

e The great number of variants is an indication of
the importance of BSTs.

The Binary-Search Tree Property

A binary search tree is a binary tree where each node
has key, parent, left child, right child

e p|x] = NIL for the root

e left|x|, right|r] may be NIL
The keys must satisfy the binary-search-tree (BST)
property:

If y is a node in the left subtree of x, then
keyly] < keylal
If y is a node in the right subtree of x, then
keyly] > keyla]

Note: This property makes sense only if the keys
are totally ordered

Searching a Binary Search Tree

Searching is easy because of the BST property:

TREE-SEARCH(x, k) [z is a pointer to a node]

1 if x = NIL or k = key|x]

2 then return z

3 if k < key|x]

4 then return TREE-SEARCH(left|z], k)
5 else return TREE-SEARCH(right|x], k)

e This tells us whether k£ appears in the subtree
rooted at x

e running time: O(h(z)), where h(x) is the height
of x

Here 1s a non-recursive version:

ITERATIVE-TREE-SEARCH(x, k)

1 while = # NIL and k # key|z]
2 do if k < key|z]

3 then x «— left|z]

4 else = « right|x]

5 return z

Minimum and maximum

Min and max are easy: just go all the way to the
left /right:

TREE-MINIMUM(x) [z is a pointer to a node]

1 while left[x] # NIL
2 do = « left|x]
3 return z

TREE-MAXIMUM(x)

1 while right|z] # NIL
2 do = « right|x]
3 return x

Successor and Predecessor

The successor of x is the element with the next-
biggest key

e May want successor if you want to list keys in
increasing order

e Again, this makes sense only if keys are totally
ordered

Where is the successor of x located?

1. If = has a right child, then it’s the leftmost node
of the subtree rooted at the right child.

e Clearly this is the successor of x in the subtree
rooted at x

e Work up the tree by induction from x to show
that this remains true

2. If = has no right child, and x is the left child of
its parent, then the successor is the parent

e Again, need to argue by induction up the tree
that this is right

3. If x is the right child of its parent, find the lowest
ancestor of x which is the left child of its parent

5

TREE-SUCCESSOR()

1
2
3
4
5!
6
7

if right|z] # NIL
then return TREE-MINIMUM(7ight|x])
y < plz]
while y # NIL and = = right|y]
do z — y

y < ply]
return y

e TREE-PREDECESSOR works the same way

e Both run in time O(h):

o We either go up the tree or down the tree

Insertion

Inserting z is straightforward:
e We insert z at a leaf

e Figure out which one by starting at the root and
making comparisons

TREE-INSERT(T, 2)

Y <— NIL
x «— root|T] ly is the parent of x]
while x # NIL
doy«—=x
if key|z] < key|z]
then x « left|x]
else = « right|x]
plz] —y
if y = NIL
then root|T] « z
else if key|z] < key|y]
then left|y] «— =
else right|y] < =

0O O UL i W N

—_ = = O
w N = O

Insertion clearly runs in time O(h)

7

Deletion in BST's

Deleting z is the trickiest operation. There are three
cases:

1. z has no children: easy — just delete z

2. z has one child: easy — delete z; child of z becomes
child of z’s parent

e we still maintain the BST property
3. if z has two children

e Find z’s successor 2’

o this will be the leftmost element in the sub-
tree rooted at right|z]

e recursively delete 2’

o this is easy because 2’ has at most one child

(no left child)

e Replace z by 2/
e This maintains the BST property

TREE-DELETE(T) z)

1
2
3

ot

7
8
9
10
11
12
13
14
15

if left|z] = NIL or right[z] = NIL
then y «— z
else y «— TREE-SUCCESSOR/|z]
ly is the node that gets spliced out]
if left|y] # NIL
then x «— left|y]
else = « right|y]
[is the unique successor of y (or NIL)]
if x £ NIL
then plz] — ply]
if ply] = NIL
then root|T| «— x
else if y = left|p|y]]

then left[py]] — =
else rightply|] «— x

if y # 2
key|z| « keyly]
lalso copy other fields, if there are any]

Again, the running time is O(h).

The Height of a Random BST

All the algorithms run in time O(h).

What’s h for an n-node tree?

e best case: Ig(n) — if the tree is perfectly balanced

e worst case: O(n) — if the tree is completely un-
balanced

What can we expect on average?

Let’s assume the tree is built up by starting with an
empty tree and inserting n elements.

e it’s very hard to analyze what happens if we have
inserts + deletes

o deletes could unbalance a tree—if a node has
two children, we delete from the right subtree.

If the n elements are in increasing or decreasing or-
der, then we have a completely unbalanced tree.

e This can be a serious problem in practice
e Running time O(n) is not acceptable

e Red-black trees solve that problem

If all the n! permutations of the trees are equally
likely, then the expected height of the tree is O(lgn).

10

Using a BST for Sorting

Can sort using a BST by doing an inorder traversal
o first left subtree, then root, then right subtree

INORDER-TREE-WALK(xz) [walk through subtree
rooted at]

1 if z = NIL

2 then INORDER-TREE-WALK(left|z])
3 print key|z]

4 INORDER-TREE-WALK(right|z])

Analysis: first need to build the BST by inserting
elements to be sorted. This takes expected time

O(lg(1)) +--- + O(lgn) = O(nlgn)
The tree walk then takes time O(n).

11

Balanced Search Trees

The BST's just presented only have expected height
O(lgn). There are a number of variants which are
guaranteed to have height O(lgn):

e red-black trees (CLR; Chapter 14)
e AVL trees

Keeping the tree balanced requires (lots of) addi-
tional overhead, although the basic ideas remain the
same.

12

Skip Lists

This material is NOT in the text.
e There is a handout

Skip lists support dictionary operations, min, max,
successor, predecessor.

e These operations have expected running time O(lg n)
e Worst-case time can be O(n)
e Advantages:

o very simple to code (much simpler than fancy
balanced BSTs)

o algorithm tosses coins, so expected running
time is independent of actual list

x unlike BST's

13

Given a set X of elements, a skip list .S for X consists
of a set {5, ..., Sk} of subsets of X:

e cach §; is implemented as a doubly-linked list

e Sy consists of all the elements of S, in sorted or-
der, + two special elements —oo and o0

e 5,1 1s a subset of 5;, again in sorted order

o 5;11 must have +o0o and —oo
o typically S;,; is about half the size of S,
o ideally S;;1 has every other element in S;
x exact size depends on the coin tosses
o S, = {—00,+00}
x typically h is about lgn
x hardly ever > 31lgn (can make sure of this)

o have links up and down from corresponding
elements in S; and 5; 4

o Skip list S has operations after, before, above,
below

o top[S] =h

14

Searching a Skip List

Why do we bother repeating the elements in a skip-
list?

e Because it makes searching, inserting, deleting,
etc. faster!

Idea in searching for k:
e start at the top level (S3), and find largest k' < k
e then go down one level and repeat

e if we don’t hit k by Sy, it’s not there

15

SKIPSEARCH(S, k)

e returns x in Sy such that key|x] is greatest key in

S <k
o if key|x] # k, then k is not in S

i < top[S] [top[S] is highest level of S]
x «— tail]S;]
while i # —1
do if keylafter|z]] < k
then x < after|x]
else if 1 # 0
then x «— below|x]
1 —1—1

© 00 O Ui Wi+~

return x

16

Insertion in Skip Lists

Suppose we want to insert item x with key k into
the skip list.

Two problems:
1. which lists do we put it into
e Sy for sure. How about S;7 S57
2. How do we find the right place to put it quickly?
Solutions:
1. Decide probabilistically: toss a coin.

e If it lands heads, put it in S;
e If it lands heads again, put it in S

e quit tossing if coin lands tails
2. Do SKIPSEARCH to find the right place quickly

We implement a coin toss by calling RANDOM(), which
returns a number in [0, 1)

e coin lands heads if RANDOM() < 1/2

17

SKIPINSERT(.S, x)

1 k<« key|x]

2 y < SKIP-SEARCH(S, k)

3 Insert x after y in .S

4 10

5 while RANDOM() < 1/2

6 do while above|y] = NIL and keyly| # —oc
7 do y « before|y]
8 1<—1+1

9 if <> top|S]

10 then top|S] < ¢
11 initialize S;
12 y «— abovely|

13 Insert x after y in S,

fix before, after, above, below]
Running time = time of SKIPSEARCH + O(top[S])

e Need to show that SKIPSEARCH runs in expected
time O(lgn)

e Also need to show that the expected number of
backtracks before above|y| # NIL is constant.

As written, top|S] could grow unboundedly
e this is extremely unlikely — requires lots of heads

Could stop top|S] at 31lgn.

18

