Binary Search Trees

Heaps are good for insertion, deletion, searching.

Priority heaps are good for minimum/maximum.

Binary search trees (BSTs) are a useful data structure to implement dictionary operations, min, max, successor, predecessor.

- basic operations take time O(height tree)
- randomly built BST with n nodes has height $\lg(n)$
- lots of other variants
 - \circ red-black trees (guaranteed to have height $\lg(n)$)
 - \circ AVL trees (also guaranteed to have height $\lg(n)$)
 - B-trees (used extensively in databases; have large outdegree and smaller height)
 - o splay trees
 - o persistent trees
- The great number of variants is an indication of the importance of BSTs.

The Binary-Search Tree Property

A binary search tree is a binary tree where each node has key, parent, left child, right child

- p[x] = NIL for the root
- left[x], right[x] may be NIL

The keys must satisfy the binary-search-tree (BST) property:

If y is a node in the left subtree of x, then $key[y] \le key[x]$ If y is a node in the right subtree of x, then $key[y] \ge key[x]$

Note: This property makes sense only if the keys are totally ordered

Searching a Binary Search Tree

Searching is easy because of the BST property:

Tree-Search(x, k) [x is a pointer to a node]

```
1 if x = \text{NIL or } k = key[x]

2 then return x

3 if k < key[x]

4 then return Tree-Search(left[x], k)

5 else return Tree-Search(right[x], k)
```

- ullet This tells us whether k appears in the subtree rooted at x
- running time: O(h(x)), where h(x) is the height of x

Here is a non-recursive version:

ITERATIVE-TREE-SEARCH(x, k)

```
1 while x \neq \text{NIL} and k \neq key[x]

2 do if k < key[x]

3 then x \leftarrow left[x]

4 else x \leftarrow right[x]

5 return x
```

Minimum and maximum

Min and max are easy: just go all the way to the left/right:

Tree-Minimum(x) [x is a pointer to a node]

- 1 while $left[x] \neq NIL$
- 2 **do** $x \leftarrow left[x]$
- 3 return x

Tree-Maximum(x)

- 1 while $right[x] \neq NIL$
- 2 do $x \leftarrow right[x]$
- 3 return x

Successor and Predecessor

The successor of x is the element with the next-biggest key

- May want successor if you want to list keys in increasing order
- Again, this makes sense only if keys are totally ordered

Where is the successor of x located?

- 1. If x has a right child, then it's the leftmost node of the subtree rooted at the right child.
 - Clearly this is the successor of x in the subtree rooted at x
 - Work up the tree by induction from x to show that this remains true
- 2. If x has no right child, and x is the left child of its parent, then the successor is the parent
 - Again, need to argue by induction up the tree that this is right
- 3. If x is the right child of its parent, find the lowest ancestor of x which is the left child of its parent

Tree-Successor(x)

```
1 if right[x] \neq \text{NIL}
2 then return TREE-MINIMUM(right[x])
3 y \leftarrow p[x]
4 while y \neq \text{NIL} and x = right[y]
5 do x \leftarrow y
6 y \leftarrow p[y]
7 return y
```

- Tree-Predecessor works the same way
- Both run in time O(h):
 - o We either go up the tree or down the tree

Insertion

Inserting z is straightforward:

- \bullet We insert z at a leaf
- Figure out which one by starting at the root and making comparisons

```
Tree-Insert(T, z)
1 y \leftarrow \text{NIL}
2 \quad x \leftarrow root[T] \qquad [y \text{ is the parent of } x]
3 while x \neq NIL
        \mathbf{do}\ y \leftarrow x
             if key[z] < key[x]
5
                 then x \leftarrow left[x]
                 else x \leftarrow right[x]
7
8 p[z] \leftarrow y
9 if y = NIL
        then root[T] \leftarrow z
10
        else if key[z] < key[y]
11
                   then left[y] \leftarrow z
12
                   else right[y] \leftarrow z
13
```

Insertion clearly runs in time O(h)

Deletion in BSTs

Deleting z is the trickiest operation. There are three cases:

- 1. z has no children: easy just delete z
- 2. z has one child: easy delete z; child of z becomes child of z's parent
 - we still maintain the BST property
- 3. if z has two children
 - Find z's successor z'
 - \circ this will be the leftmost element in the subtree rooted at right[z]
 - recursively delete z'
 - \circ this is easy because z' has at most one child (no left child)
 - Replace z by z'
 - This maintains the BST property

```
Tree-Delete(T, z)
    if left[z] = NIL \text{ or } right[x] = NIL
       then y \leftarrow z
       else y \leftarrow \text{Tree-Successor}[z]
          [y is the node that gets spliced out]
    if left[y] \neq NIL
       then x \leftarrow left[y]
       else x \leftarrow right[y]
          [x \text{ is the unique successor of } y \text{ (or NIL)}]
   if x \neq NIL
       then p[x] \leftarrow p[y]
   if p[y] = NIL
       then root[T] \leftarrow x
10
11 else if y = left[p[y]]
                 then left[p[y]] \leftarrow x
12
                 else right[p[y]] \leftarrow x
13
14 if y \neq z
    key[z] \leftarrow key[y]
15
          [also copy other fields, if there are any]
```

Again, the running time is O(h).

The Height of a Random BST

All the algorithms run in time O(h).

What's h for an n-node tree?

- best case: $\lg(n)$ if the tree is perfectly balanced
- worst case: O(n) if the tree is completely unbalanced

What can we expect on average?

Let's assume the tree is built up by starting with an empty tree and inserting n elements.

- it's very hard to analyze what happens if we have inserts + deletes
 - deletes could unbalance a tree—if a node has two children, we delete from the right subtree.

If the n elements are in increasing or decreasing order, then we have a completely unbalanced tree.

- This can be a serious problem in practice
- Running time O(n) is not acceptable
- Red-black trees solve that problem

If all the n! permutations of the trees are equally likely, then the expected height of the tree is $O(\lg n)$.

Using a BST for Sorting

Can sort using a BST by doing an *inorder* traversal

- first left subtree, then root, then right subtree INORDER-TREE-WALK(x) [walk through subtree rooted at x]
- 1 if $x \neq \text{NIL}$
- then Inorder-Tree-Walk(left[x])
- 3 print key[x]
- 4 INORDER-TREE-WALK(right[x])

Analysis: first need to build the BST by inserting elements to be sorted. This takes expected time

$$O(\lg(1)) + \dots + O(\lg n) = O(n \lg n)$$

The tree walk then takes time O(n).

Balanced Search Trees

The BSTs just presented only have expected height $O(\lg n)$. There are a number of variants which are guaranteed to have height $O(\lg n)$:

- red-black trees (CLR; Chapter 14)
- AVL trees
- . . .

Keeping the tree balanced requires (lots of) additional overhead, although the basic ideas remain the same.

Skip Lists

This material is NOT in the text.

• There is a handout

Skip lists support dictionary operations, min, max, successor, predecessor.

- These operations have expected running time $O(\lg n)$
- Worst-case time can be O(n)
- Advantages:
 - very simple to code (much simpler than fancy balanced BSTs)
 - algorithm tosses coins, so expected running time is independent of actual list
 - * unlike BSTs

Given a set X of elements, a skip list S for X consists of a set $\{S_0, \ldots, S_h\}$ of subsets of X:

- \bullet each S_i is implemented as a doubly-linked list
- S_0 consists of all the elements of S, in sorted order, + two special elements $-\infty$ and $+\infty$
- S_{i+1} is a subset of S_i , again in sorted order
 - $\circ S_{i+1}$ must have $+\infty$ and $-\infty$
 - \circ typically S_{i+1} is about half the size of S_i
 - \circ ideally S_{i+1} has every other element in S_i
 - * exact size depends on the coin tosses

$$\circ S_h = \{-\infty, +\infty\}$$

- * typically h is about $\lg n$
- * hardly ever $> 3 \lg n$ (can make sure of this)
- \circ have links up and down from corresponding elements in S_i and S_{i+1}
- \circ Skip list S has operations after, before, above, below
- $\circ top[S] = h$

Searching a Skip List

Why do we bother repeating the elements in a skiplist?

• Because it makes searching, inserting, deleting, etc. faster!

Idea in searching for k:

- start at the top level (S_h) , and find largest $k' \leq k$
- then go down one level and repeat
- if we don't hit k by S_0 , it's not there

SKIPSEARCH(S, k)

- returns x in S_0 such that key[x] is greatest key in $S \leq k$
- if $key[x] \neq k$, then k is not in S

```
\begin{array}{cccc} 1 & i \leftarrow top[S] & [top[S] \text{ is highest level of } S] \\ 2 & x \leftarrow tail[S_i] \\ 3 & \textbf{while } i \neq -1 \\ 4 & \textbf{do if } key[after[x]] \leq k \\ 5 & \textbf{then } x \leftarrow after[x] \\ 6 & \textbf{else if } i \neq 0 \\ 7 & \textbf{then } x \leftarrow below[x] \\ 8 & i \leftarrow i-1 \\ 9 & \textbf{return } x \end{array}
```

Insertion in Skip Lists

Suppose we want to insert item x with key k into the skip list.

Two problems:

- 1. which lists do we put it into
 - S_0 for sure. How about S_1 ? S_2 ?
- 2. How do we find the right place to put it quickly? Solutions:
 - 1. Decide probabilistically: toss a coin.
 - If it lands heads, put it in S_1
 - If it lands heads again, put it in S_2
 - ...
 - quit tossing if coin lands tails
- 2. Do SkipSearch to find the right place quickly We implement a coin toss by calling Random(), which returns a number in [0,1)
 - coin lands heads if RANDOM() < 1/2

```
SKIPINSERT(S, x)
    k \leftarrow key[x]
   y \leftarrow \text{Skip-Search}(S, k)
    Insert x after y in S_0
   i \leftarrow 0
5
    while RANDOM() < 1/2
         do while above[y] = \text{NIL} \text{ and } key[y] \neq -\infty
6
                  do y \leftarrow before[y]
7
             i \leftarrow i + 1
8
             if i > top[S]
9
                  then top[S] \leftarrow i
10
                          initialize S_i
11
             y \leftarrow above[y]
12
             Insert x after y in S_i
13
              [fix before, after, above, below]
```

Running time = time of SkipSearch + O(top[S])

- Need to show that SKIPSEARCH runs in expected time $O(\lg n)$
- Also need to show that the expected number of backtracks before $above[y] \neq \text{NIL}$ is constant.

As written, top[S] could grow unboundedly

• this is extremely unlikely — requires lots of heads Could stop top[S] at $3 \lg n$.