Insertion With Open Addressing

Idea: keep probing until you find a free slot:
OPEN-PROBE-INSERT(T), z)
y — h(key[z],0)
1+ 0
while T[y] # NIL

doi—1i+1

y < h(keylz],?)

Ty — =z

—

Oy O s W N

Searching is similar:

e Terminate when you find the element you’re look-
ing for or an empty slot.

Linear Probing

The most obvious thing to do if a slot is already
occupied is to search through the table sequentially
until we find an empty slot. This is linear probing:

h(k,3) = W (k) + ¢ mod m

e 1/ is an arbitrary hash function

e start at h'(k) and search forward
Naive analysis: Suppose probes are independent
and the load factor is o (o < 1 for open addressing).

e Pr(given cell is empty) =1 — a.

e F(#probes to find empty cell) = 1/(1 — a).
What happens in practice: primary clustering.

e Runs of occupied slots build up

e The expected number of probes in an unsuccess-
ful/successful search is actually more like

S+ 1/ =a)) / J(1+1/(1 - a))

e This is not so bad if & = .5; degrades badly if «
is close to 1.

Deletion is tricky:

e Problem: if you delete, for example, T(h(k,2)),
you have to move back key k' in position T'(h(k, 3))
if h(k,0) = h(k’,0). Similarly, may have to move
back key in position T'(h(k,4), T(h(k,5)), ...

o If you don’t move it back, then searching won’t
work right.

e Have to keep checking if an item should be moved
back until you find an empty slot

e Deleting this way may take time O(n).
e Alternative: just mark element as “deleted”

o Then don’t have to move back anything
o HASH-INSERT can still use empty slot.

o But now search time not just dependent on
load factor.

o This makes people uncomfortable about using
this approach.

Quadratic Probing

In quadratic probing
h(k,i) = (B'(k) + c1i + ¢24?) mod m

e 7' is the initial hash function

® c1, cy are constants

® ¢y # 0 (or else we're basically doing linear prob-

ing)

In practice, quadratic probing is much better than
linear probing

o Still causes secondary clustering

o h'(k) = K/(k') implies that the probe sequences
for k and K’ are the same

e This is only a problem with high load factors

Double Hashing

In double hashing, the probe sequence depends on k
h(k,7) = (h1(k) + iha(k)) mod m
Must have hy(k) relatively prime to m
e gcd(he(k),m) =1
Otherwise we don’t probe the whole hash table.
¢ If gcd = d, we probe only 1/d of the hash table
e If m = 600, hy(k) = 6, probe only 100 elements
Can guarantee gcd = 1 if
e m is a prime, ha(k) < m

e m is a power of 2, ha(k) is odd

5

Hashing: Summary

Hashing is very useful in practice. Typically we use
e Hashing with chaining, with a load factor ~ 1

e Open-address hashing with quadratic probing and
a load factor of < .5

o load factors aren’t comparable; we can afford
a bigger table with open-address hashing

Lots of applications:

e in compilers, to keep track of declared variables
in code

o only need insert and search
e in game programs to keep track of positions
e in spell-checkers to detect misspelled words

o can prehash dictionary

Analysis of Open-Address Hashing

E(#probes in an unsuccessful search) = 1/(1 — «)
e Assuming all search sequences equally likely

e somewhat better in a successful search

Expected time for insertion: 1/(1 —)

o Insertion is more or less like an unsuccessful search

Priority Queues

Hashing is great for insertion, deletion, searching (all
roughly constant time).

e But with hashing can’t take max/min

If all you want to do is insert, delete, max, the pri-
ority queues are a good choice.

Operations for priority queues:
o INSERT(S, z): insert z into S
o put a new job in the queue
o MAXIMUM(S): get element of S with largest key
o Examining next job

e EXTRACT-MAX(S): remove and return element
of S with largest key

o Perform next job (and remove it from queue)

Priority queues are used to model queues/waiting
lines.

Heaps

A good way of implementing a priority queue is by
using a heap.

A (binary) heap data structure is an array.
e It’s a way of representing a tree
e For an index i:
o PARENT(4) = |i/2]
o LEFT(z) = 2¢
o RiGHT(?) = 21 4+ 1
o If 7 is represented in binary, can easily compute
PAreNT, LEFT, RIGHT
e Heaps satisfy the heap property:
A[PARENT(Z)] > Ali
That means that heaps are (sort of) sorted

Given an array A, there may a heap in an initial
subarray of A:

e length[A] is the number of elements in A

o heap-size[A] < length[A] is the number of ele-
ments in the heap stored in A.

9

HEAPIFY((A4, 1))

l — LEFT(7)

r — RIGHT(7)

if | < heapsize[A] and A[l] > Al]

then largest — [

else largest — @

if r < heapsize[A] and A[r] > Allargest]
then largest — r

if largest # i

then exchange A[i] with A[largest]

10 HEAPIFY(A,largest)

© 00 3O Ut i W N~

11

Heap Operations: Heapify

We want to be able to perform certain operations to
manipulate heaps:

e HEAPIFY: makes the tree rooted at i a heap,
if the trees rooted at LEFT(¢) and RIGHT(¢) are
heaps.

o Problem: A[i] may be smaller than its chil-
dren, violating the heap property.

o Solution: switch A[i] with the appropriate child

10

Running Time of Heapify

Let T'(n) be the worst-case running time of HEAPIFY (A, 7)
if the subtree rooted at ¢ has n elements.

e In the worst case, need to run HEAPIFY on a child
of 7 + do a constant amount of other work

e A child of i may be the root of a tree with as
many as 2n/3 children. Therefore:

T(n) <T(2n/3) +O(1)
e By the master theorem, T'(n) = O(Ign).

e Alternatively, on a tree of height h, the running
time of HEAPIFY is O(h)
o The height of a tree is the length of the longest
path from the root to a leaf.

o The height of a binary tree with n nodes is
Ign.

12

Heap Operations: Building a Heap

Given an array of elements, we want to make a heap
out of them.

e We can do that by running HEAPIFY from the
bottom up

BuiLD-HEAP(A)

1 for i «— |length[A]/2] downto 1
2 do HEAPIFY(A,1)
3 heap-size(A) — length(A)
Running time of BUILD-HEAP
e Clearly O(nlgn): We call HEAPIFY n/2 times.

e Can get a better upper bound, since for most
of the calls, we are dealing with much smaller
subtrees:

Ign o)
ng (n/2%)ck < cn kZ (k/2%) = 2¢n
—0 =0

Thus, BUILD-HEAP runs in linear time.

13

Implementing a Priority Queue With
a Heap

Suppose elements of S are stored in a heap A.

e Implement MAXIMUM(SS) with HEAP-MAXIMUM:
return A[1]

o Running time: ©(1)
Implement EXTRACT-MAX by returning A[1], switch-

ing A[1] and A[n], and then making A[l..n — 1] into
a heap (as in HEAPSORT).

HeaP-ExTRACT-MAX(A)

1 if heap-size[A] < 1

2 then error “heap underflow”
3 maz — A[1]

4 A[l] «— Alheap-size[A]]

5 heap-size[A] «— heap-size[A] — 1
6 HEAPIFY(A,1)
7 return max

Running time of HEAP-EXTRACT-MAX: O(lgn)

e One call to Heapify + constant amount of other
work

15

Calculating the sum

We can prove by induction on N that

¥ ok = (1-a")/(1-a)

=0

Therefore:
Eomk =1/(1—a),ifz <1

Now differentiate both sides to get

EO kx* ' =1/(1 — x)?
Multiply both sides by z:

HEO ka* = 2/(1 — x)*
Substitute x = 1/2:

EO k/2k =2

14

What about insertion?

e Put new element at the bottom of the heap and
then percolate it up until it gets to the proper
place.

HEAP-INSERT(A4, z)
heap-size[A] — heap-size[A] + 1
i < heap-size[A]
while 7 > 1 and A[PARENT(Z)] < z
do A[i] — A[PARENT(?)]
i «— PARENT(?)

CU R W N =

6 Afi] — x
e Running time of HEAP-INSERT: ©(lgn)

o We go through the loop at most lgn times, as
we go from the leaf to the root

16

Heapsort

We can also use heaps for sorting:

If we build a heap using BuiLpD-HrAp, the heap
property guarantees

o the largest element will be first.
e the two subtrees of the root are heaps
Now if we switch the first and last elements:

e the last element is the largest (which is what we
want in a sorted array)

e since the children of the root are still heaps, we
can use HEAPIFY

HEAPSORT(A)

1 BuiLD-HEAP(A)

2 for i < length|A] downto 2

3 do exchange A[1] < AJi]

4 heapsize[A] < heapsize[A] — 1

5 Heapiry(A,1)

Running time of HEAPSORT is O(nlgn)
e One call to BuiLp-HEAP: O(n)

e n — 1 calls to HEAPIFY, each one is O(lgn)

17

The Binary-Search Tree Property

A binary search tree is a binary tree where each node
has key, parent, left child, right child

e p[z] = NIL for the root
o left[z], right[x] may be NIL
The keys must satisfy the binary-search-tree (BST)
property:
If y is a node in the left subtree of z, then

keyly] < keylz]
If y is a node in the right subtree of z, then

keyly] > key[z]

Note: This property makes sense only if the keys
are totally ordered

19

Binary Search Trees

Heaps are good for insertion, deletion, searching.
Priority heaps are good for minimum/maximum.

Binary search trees (BSTs) are a useful data struc-
ture to implement dictionary operations, min, max,
successor, predecessor.

e basic operations take time O(height tree)
e randomly built BST with n nodes has height 1g(n)

e will consider variants of BSTs — red-black trees —
that are guaranteed to have height O(lgn)

e Another variant, B-trees, are used in databases
e lots of other variants

o splay trees
o AVL trees

o persistent trees

e The great number of variants is an indication of
the importance of BSTs.

18

Searching a Binary Search Tree

Searching is easy because of the BST property:
TREE-SEARCH(z,k) [z is a pointer to a node]

1 if z = NIL or k = key|x]

2 then return z

3 if k < keylx]

4 then return TREE-SEARCH(left[z], k)
5 else return TREE-SEARCH(right[z], k)

e This tells us whether k£ appears in the subtree
rooted at x

e running time: O(h(x)), where h(z) is the height
of x
Here is a non-recursive version:
ITERATIVE-TREE-SEARCH(z, k)

1 while z # NIL and k # key[z]
2 do if k < key[z]

3 then z — left[z]

4 else z «— right[z]

5 return x

20

Minimum and maximum

Min and max are easy: just go all the way to the
left /right:
TREE-MINIMUM(z) [z is a pointer to a node]

1 while left[z] # NIL
2 do z — left[x]
3 return x

TREE-MAXIMUM(x)

1 while right[z] # NIL
2 do z « right|z]
3 return x

21

TREE-SUCCESSOR ()

1 if right[z] # NIL

2 then return TREE-MINIMUM(right[x])
3y« pla]

4 while y # NIL and z = right[y]

5 doz—y

6

7

y — ply]
return y

o TREE-PREDECESSOR works the same way
e Both run in time O(h):

o We either go up the tree or down the tree

23

Successor and Predecessor

The successor of z is the element with the next-
biggest key

e May want successor if you want to list keys in
increasing order

e Again, this makes sense only if keys are totally
ordered

Where is the successor of z located?

1. If z has a right child, then it’s the leftmost node
of the subtree rooted at the right child.

e Clearly this is the successor of z in the subtree
rooted at z

e Work up the tree by induction from z to show
that this remains true

2. If z has no right child, and z is the left child of
its parent, then the successor is the parent

e Again, need to argue by induction up the tree
that this is right

3. If x is the right child of its parent, find the lowest
ancestor of z which is the left child of its parent

22

Insertion

Inserting z is straightforward:
e We insert z at a leaf

e Figure out which one by starting at the root and
making comparisons

TREE-INSERT(T, 2)

Yy <— NIL
x «— root|T)| [y is the parent of z]
while z # NIL
doy«—z=z
if key[z] < key[z]
then z «— left[x]
else © — right[z]
plz] <y
if y = NIL
then root[T] « z
11 else if key|z] < keyly]
12 then leftly] — =
13 else right[y] «— z

0~ O O W=

= O
[an)

Insertion clearly runs in time O(h)

24

Deletion in BST's

Deleting z is the trickiest operation. There are three
cases:

1. z has no children: easy — just delete z

2. z has one child: easy — delete z; child of z becomes
child of z’s parent

e we still maintain the BST property
3. if z has two children

e Find z’s successor 2’

o this will be the leftmost element in the sub-
tree rooted at right]z]

e recursively delete 2’

o this is easy because 2’ has at most one child
(no left child)

e Replace z by 2/
¢ This maintains the BST property

25

The Height of a Random BST

All the algorithms run in time O(h).
What’s h for an n-node tree?
e best case: lg(n) — if the tree is perfectly balanced

e worst case: O(n) — if the tree is completely un-
balanced

What can we expect on average?

Let’s assume the tree is built up by starting with an
empty tree and inserting n elements.

e it’s very hard to analyze what happens if we have
inserts + deletes

o deletes could unbalance a tree—if a node has
two children, we delete from the right subtree.

If the n elements are in increasing or decreasing or-
der, then we have a completely unbalanced tree.

e This can be a serious problem in practice
e Running time O(n) is not acceptable
e Red-black trees solve that problem

If all the n! permutations of the trees are equally
likely, then the expected height of the tree is O(Ilgn).

27

TREE-DELETE(T, z)
1 if left[z] = NIL or right[z] = NIL
2 then y «— z

3 else y — TREE-SUCCESSOR|?]
[y is the node that gets spliced out]

4 if leftly] # NIL
5 then z « left[y]
6 else z « right[y]

[z is the unique successor of y (or NIL)]
7 if x # NIL
8 then p[z] « p[y]
9 if ply] = NIL
10 then rool[T] < =
11 else if y = leftp[y]]

12 then leftp[y]] — =
13 else right[ply]] — =
14 if y # z

15 key[z] < keyly]
[also copy other fields, if there are any]

Again, the running time is O(h).

26

Using a BST for Sorting

Can sort using a BST by doing an inorder traversal
o first left subtree, then root, then right subtree

INORDER-TREE-WALK(z) [walk through subtree
rooted at z]

1 if x # NIL

2 then INORDER-TREE-WALK(left[z])
3 print key[z]

4 INORDER-TREE-WALK(right[z])

Analysis: first need to build the BST by inserting
elements to be sorted. This takes expected time

O(lg(1)) + ---+ O(lgn) = O(nlgn)
The tree walk then takes time O(n).

28

Balanced Search Trees

The BSTs just presented only have expected height
O(lgn). There are a number of variants which are
guaranteed to have height O(lgn):

e red-black trees (CLR; Chapter 14)
o AVL trees

Keeping the tree balanced requires (lots of) addi-
tional overhead, although the basic ideas remain the
same.

29

