Insertion With Open Addressing

Idea: keep probing until you find a free slot:
OPEN-PROBE-INSERT(T, x)

1y — h(key[z], 0)
1<—0
while T'|y| # NIL
doi:+—1+1
y — h(keylx], i)
Tly] — =

S Ol W N

Searching is similar:

e Terminate when you find the element you’re look-
ing for or an empty slot.



Deletion is tricky:

e Problem: if you delete, for example, T'(h(k,2)),
you have to move back key k" in position T'(h(k, 3))
if h(k,0) = h(k',0). Similarly, may have to move
back key in position T'(h(k,4), T(h(k,5)), ...

o If you don’t move it back, then searching won’t
work right.

e Have to check all items to see if they should be
moved back.

e Deleting this way takes time O(n).
e Alternative: just mark element as “deleted”

o Then don’t have to move back anything

o HASH-INSERT can still use empty slot.

o But now search time not just dependent on
load factor.

As a result, in applications with deletion, chaining
is more commonly used.



Linear Probing

The most obvious thing to do if a slot is already
occupied is to search through the table sequentially
until we find an empty slot. This is lznear probing:

h(k,i) = h'(k) + i mod m

e i/ is an arbitrary hash function

e start at h'(k) and search forward
Naive analysis: Suppose probes are independent
and the load factor is a (o < 1 for open addressing).

e Pr(given cell is empty) =1 — a.

e [/(#probes to find empty cell) = 1/(1 — «).
What happens in practice: primary clustering.

e Runs of occupied slots build up

e The expected number of probes in an unsuccess-
ful /successful search is actually more like

A1/ —a)) [ S(1+1/(1 - a)

e This is not so bad if a = .5; degrades badly if «
is close to 1.



Quadratic Probing

In quadratic probing
h(k,i) = (K (k) + c1i + c2i*) mod m
e i/ is the initial hash function
® C|, Co are constants

e co # 0 (or else we're basically doing linear prob-
ing)
In practice, quadratic probing is much better than
linear probing

e Still causes secondary clustering

o h'(k) = h/(k’) implies that the probe sequences
for k and k' are the same

e This is only a problem with high load factors



Double Hashing

In double hashing, the probe sequence depends on k
h(k,7) = (hi(k) + iho(k)) mod m
Must have ho(k) relatively prime to m
e gcd(ha(k),m) =1
Otherwise we don’t probe the whole hash table.
e If gcd = d, we probe only 1/d of the hash table
e If m = 600, ho(k) = 6, probe only 100 elements
Can guarantee gcd = 1 if
e m is a prime, hy(k) < m

e m is a power of 2, ho(k) is odd



Analysis of Open-Address Hashing

E(#probes in an unsuccessful search) = 1/(1 — «)
e Assuming all search sequences equally likely

e somewhat better in a successful search

Expected time for insertion: 1/(1 — )

e Insertion is more or less like an unsuccessful search



Hashing: Summary

Hashing is very useful in practice. Typically we use
e Hashing with chaining, with a load factor ~ 1

e Open-address hashing with quadratic probing and
a load factor of < .5

o load factors aren’t comparable; we can afford
a bigger table with open-address hashing

Lots of applications:

e in compilers, to keep track of declared variables
in code

o only need insert and search
e in game programs to keep track of positions
e in spell-checkers to detect misspelled words

o can prehash dictionary



Priority Queues

Hashing is great for insertion, deletion, searching (all
roughly constant time).

e But with hashing can’t take max/min

If all you want to do is insert, delete, max, the pri-
ority queues are a good choice.

Operations for priority queues:
e INSERT(S, x): insert = into S
o put a new job in the queue
e MAXIMUM(S): get element of S with largest key
o Examining next job

e EXTRACT-MAX(S): remove and return element
of S with largest key

o Perform next job (and remove it from queue)

Priority queues are used to model queues/waiting
lines.



Heaps

A good way of implementing a priority queue is by
using a heap.

A (binary) heap data structure is an array.
e [t’s a way of representing a tree
e For an index 7:
o PARENT(7) = [¢/2]
o LEFT(2) = 21
o RigHT(i) = 2i + 1

e If 7 is represented in binary, can easily compute
PARENT, LEFT, RIGHT

e Heaps satisfy the heap property:
A[PARENT(7)] > Alt]
That means that heaps are (sort of) sorted

Given an array A, there may a heap in an initial
subarray of A:

e length|A] is the number of elements in A
e heap-size|A] < length|A] is the number of ele-

ments in the heap stored in A.

9



Heap Operations: Heapify

We want to be able to perform certain operations to
manipulate heaps:

e HEAPIFY: makes the tree rooted at ¢ a heap,
if the trees rooted at LEFT(i) and RIGHT(7) are
heaps.

o Problem: A[:] may be smaller than its chil-
dren, violating the heap property.

o Solution: switch A[:] with the appropriate child

10



HEAPIFY((A, 1))

| — LEFT(7)
r < RIGHT(7)
if | < heapsize[A] and A[l] > A[1]
then largest < [
else largest «— 1@
if r < heapsize[A] and Alr] > Allargest]
then largest < r
if largest #£ 1
then exchange Ali] with Allargest]
0 HEAPIFY(A,largest)

—_ O 00 ~J O U i x W DN =

11



Running Time of Heapifty

Let T'(n) be the worst-case running time of HEAPIFY(A, 7)
if the subtree rooted at 7 has n elements.

e In the worst case, need to run HEAPIFY on a child
of 1 + do a constant amount of other work

e A child of + may be the root of a tree with as
many as 2n/3 children. Therefore:

T(n) < T(2n/3) + ©(1)

e By the master theorem, T'(n) = ©(Ign).

e Alternatively, on a tree of height A, the running
time of HEAPIFY is ©(h)

o The height of a tree is the length of the longest
path from the root to a leaf.

o The height of a binary tree with n nodes is
lg n.

12



Heap Operations: Building a Heap

Given an array of elements, we want to make a heap
out of them.

e Run HEAPIFY from the bottom up!
BuiLD-HEAP(A)

1 heap-size(A) < length(A)
2 for i «— |length|A]/2] downto 1
3 do HEAPIFY(A,1)

Running time of BUILD-HEAP
e Clearly O(nlgn): We call HEAPIFY n/2 times.

e Can get a better upper bound, since for most of
the calls, we have much smaller subtrees.

o Claim: we call HEAPIFY at most [n/2%"!] times
on a tree of height k (with roughly 2* nodes).

g ] 00
ng ([n/25 ™)) ek < en kZ (k/2%) = 2¢n

Thus, BUILD-HEAP runs in linear time.

13



Calculating the sum

We can prove by induction on N that

> ot = (1-2V)/(1 - a)

=0

Therefore:
onk =1/(1—2),ifz <1
Now differentiate both sides to get
EO k"' =1/(1 - z)?
Multiply both sides by =:
:Eo ka® =x/(1 — z)?
Substitute x = 1/2:

§Ok/2k =2

14



Implementing a Priority Queue With
a Heap

Suppose elements of S are stored in a heap A.

e Implement MAXIMUM(S) with HEAP-MAXIMUM:
return A[1]

o Running time: ©(1)

Implement EXTRACT-MAX by returning A|[1], switch-
ing A[1] and A[n] (n = heap-size|A]), and then mak-
ing A[l..n — 1] into a heap.

HEAP-EXTRACT-MAX(A)

if heap-size[A] < 1

then error “heap underflow”
maz «— A[l]
A[l] « Al|heap-size[A]]
heap-size| A] < heap-size[A] — 1
HEAPIFY(A, 1)
return max

J O O & W N =

Running time of HEAP-EXTRACT-MAX: ©(lgn)

e One call to Heapify + constant amount of other
work

15



What about insertion?

e Put new element at the bottom of the heap and
then percolate it up until it gets to the proper
place.

HEAP-INSERT(A, x)

heap-size| A] < heap-size[A] + 1

i «— heap-size|A]

while ¢ > 1 and A[PARENT(7)] < x
(

do A[i]| «— A[PARENT(%)]
i «— PARENT(%)

O Ol W N~

Alt] «+— x
e Running time of HEAP-INSERT: O(Ign)

o We go through the loop at most Ilgn times, as
we go from the leaf to the root

16



Heapsort

We can also use heaps for sorting:

If we build a heap using BUILD-HEAP, the heap
property guarantees

e the largest element will be first.

e the two subtrees of the root are heaps
Now if we switch the first and last elements:

e the last element is the largest (which is what we
want in a sorted array)

e since the children of the root are still heaps, we
can use HEAPIFY

HEAPSORT(A)

1 BuiLD-HEAP(A)

2 for i < length|A] downto 2

3 do exchange A[l] < Ali]

4 heapsize|A| < heapsize|A] — 1
5 HEAPIFY (A, 1)

Running time of HEAPSORT is O(nlgn)

e One call to BUILD-HEAP: O(n)

e n — 1 calls to HEAPIFY, each one is O(Ign)

17



