Insertion With Open Addressing

Idea: keep probing until you find a free slot: Open-Probe-Insert(T,x)

```
\begin{array}{ll} 1 & y \leftarrow h(key[x], 0) \\ 2 & i \leftarrow 0 \\ 3 & \textbf{while} \ T[y] \neq \text{NIL} \\ 4 & \textbf{do} \ i \leftarrow i+1 \\ 5 & y \leftarrow h(key[x], i) \\ 6 & T[y] \leftarrow x \end{array}
```

Searching is similar:

• Terminate when you find the element you're looking for or an empty slot.

Deletion is tricky:

- Problem: if you delete, for example, T(h(k,2)), you have to move back key k' in position T(h(k,3)) if h(k,0) = h(k',0). Similarly, may have to move back key in position $T(h(k,4), T(h(k,5)), \ldots$
 - If you don't move it back, then searching won't work right.
- Have to check all items to see if they should be moved back.
- Deleting this way takes time O(n).
- Alternative: just mark element as "deleted"
 - Then don't have to move back anything
 - Hash-Insert can still use empty slot.
 - But now search time not just dependent on load factor.

As a result, in applications with deletion, chaining is more commonly used.

Linear Probing

The most obvious thing to do if a slot is already occupied is to search through the table sequentially until we find an empty slot. This is *linear probing*:

$$h(k,i) = h'(k) + i \bmod m$$

- h' is an arbitrary hash function
- start at h'(k) and search forward

Naive analysis: Suppose probes are independent and the load factor is α (α < 1 for open addressing).

- $Pr(given cell is empty) = 1 \alpha$.
- $E(\text{\#probes to find empty cell}) = 1/(1-\alpha)$.

What happens in practice: primary clustering.

- Runs of occupied slots build up
- The expected number of probes in an unsuccessful/successful search is actually more like

$$\frac{1}{2}(1+1/(1-\alpha)^2) / \frac{1}{2}(1+1/(1-\alpha))$$

• This is not so bad if $\alpha = .5$; degrades badly if α is close to 1.

Quadratic Probing

In quadratic probing

$$h(k,i) = (h'(k) + c_1i + c_2i^2) \mod m$$

- h' is the initial hash function
- c_1 , c_2 are constants
- $c_2 \neq 0$ (or else we're basically doing linear probing)

In practice, quadratic probing is much better than linear probing

- Still causes secondary clustering
 - $\circ h'(k) = h'(k')$ implies that the probe sequences for k and k' are the same
- This is only a problem with high load factors

Double Hashing

In double hashing, the probe sequence depends on k

$$h(k,i) = (h_1(k) + ih_2(k)) \bmod m$$

Must have $h_2(k)$ relatively prime to m

 $\bullet \gcd(h_2(k), m) = 1$

Otherwise we don't probe the whole hash table.

- If gcd = d, we probe only 1/d of the hash table
- If m = 600, $h_2(k) = 6$, probe only 100 elements

Can guarantee gcd = 1 if

- m is a prime, $h_2(k) < m$
- m is a power of 2, $h_2(k)$ is odd

Analysis of Open-Address Hashing

 $E(\text{\#probes in an unsuccessful search}) = 1/(1-\alpha)$

- Assuming all search sequences equally likely
- somewhat better in a successful search

Expected time for insertion: $1/(1-\alpha)$

• Insertion is more or less like an unsuccessful search

Hashing: Summary

Hashing is very useful in practice. Typically we use

- \bullet Hashing with chaining, with a load factor ~ 1
- Open-address hashing with quadratic probing and a load factor of < .5
 - o load factors aren't comparable; we can afford a bigger table with open-address hashing

Lots of applications:

- in compilers, to keep track of declared variables in code
 - o only need insert and search
- in game programs to keep track of positions
- in spell-checkers to detect misspelled words
 - o can prehash dictionary

Priority Queues

Hashing is great for insertion, deletion, searching (all roughly constant time).

• But with hashing can't take max/min

If all you want to do is insert, delete, max, the *priority queues* are a good choice.

Operations for priority queues:

- INSERT(S, x): insert x into S
 - o put a new job in the queue
- MAXIMUM(S): get element of S with largest key
 Examining next job
- EXTRACT-MAX(S): remove and return element of S with largest key
 - o Perform next job (and remove it from queue)

Priority queues are used to model queues/waiting lines.

Heaps

A good way of implementing a priority queue is by using a heap.

A (binary) heap data structure is an array.

- It's a way of representing a tree
- \bullet For an index i:
 - \circ Parent $(i) = \lfloor i/2 \rfloor$
 - \circ Left(i) = 2i
 - $\circ Right(i) = 2i + 1$
- If i is represented in binary, can easily compute Parent, Left, Right
- Heaps satisfy the heap property:

$$A[PARENT(i)] \ge A[i]$$

That means that heaps are (sort of) sorted Given an array A, there may a heap in an initial subarray of A:

- length[A] is the number of elements in A
- $heap\text{-}size[A] \leq length[A]$ is the number of elements in the heap stored in A.

Heap Operations: Heapify

We want to be able to perform certain operations to manipulate heaps:

- HEAPIFY: makes the tree rooted at i a heap, if the trees rooted at LEFT(i) and RIGHT(i) are heaps.
 - \circ Problem: A[i] may be smaller than its children, violating the heap property.
 - \circ Solution: switch A[i] with the appropriate child

```
Heapify((A, i))

1 l \leftarrow \text{Left}(i)

2 r \leftarrow \text{Right}(i)

3 if l \leq heapsize[A] and A[l] > A[i]

4 then largest \leftarrow l

5 else largest \leftarrow i

6 if r \leq heapsize[A] and A[r] > A[largest]

7 then largest \leftarrow r

8 if largest \neq i

9 then exchange A[i] with A[largest]

10 Heapify(A, largest)
```

Running Time of Heapify

Let T(n) be the worst-case running time of Heapify(A, i) if the subtree rooted at i has n elements.

- In the worst case, need to run Heapify on a child of i + do a constant amount of other work
- A child of i may be the root of a tree with as many as 2n/3 children. Therefore:

$$T(n) \le T(2n/3) + \Theta(1)$$

- By the master theorem, $T(n) = \Theta(\lg n)$.
- Alternatively, on a tree of height h, the running time of HEAPIFY is $\Theta(h)$
 - \circ The *height* of a tree is the length of the longest path from the root to a leaf.
 - \circ The height of a binary tree with n nodes is $\lg n$.

Heap Operations: Building a Heap

Given an array of elements, we want to make a heap out of them.

• Run Heapify from the bottom up!

Build-Heap(A)

- $1 \ heap\text{-}size(A) \leftarrow length(A)$
- 2 for $i \leftarrow |length[A]/2|$ downto 1
- 3 do Heapify(A, i)

Running time of Build-Heap

- Clearly $O(n \lg n)$: We call Heapify n/2 times.
- Can get a better upper bound, since for most of the calls, we have much smaller subtrees.
 - Claim: we call HEAPIFY at most $\lceil n/2^{k+1} \rceil$ times on a tree of height k (with roughly 2^k nodes).

$$\sum_{k=1}^{\lfloor \lg n \rfloor} (\lceil n/2^{k+1}) \rceil) ck \le cn \sum_{k=0}^{\infty} (k/2^k) = 2cn$$

Thus, Build-Heap runs in linear time.

Calculating the sum

We can prove by induction on N that

$$\sum_{x=0}^{N} x^k = (1 - x^{N+1})/(1 - x)$$

Therefore:

$$\sum_{x=0}^{\infty} x^k = 1/(1-x)$$
, if $x < 1$

Now differentiate both sides to get

$$\sum_{x=0}^{\infty} kx^{k-1} = 1/(1-x)^2$$

Multiply both sides by x:

$$\sum_{x=0}^{\infty} kx^k = x/(1-x)^2$$

Substitute x = 1/2:

$$\sum_{x=0}^{\infty} k/2^k = 2$$

Implementing a Priority Queue With a Heap

Suppose elements of S are stored in a heap A.

- Implement Maximum(S) with Heap-Maximum: return A[1]
 - \circ Running time: $\Theta(1)$

Implement Extract-Max by returning A[1], switching A[1] and A[n] (n = heap-size[A]), and then making A[1..n-1] into a heap.

HEAP-EXTRACT-MAX(A)

- 1 **if** heap-size[A] < 1
- 2 then error "heap underflow"
- $3 \quad max \leftarrow A[1]$
- $4 \quad A[1] \leftarrow A[heap\text{-}size[A]]$
- $5 \quad heap\text{-}size[A] \leftarrow heap\text{-}size[A] 1$
- 6 HEAPIFY(A,1)
- 7 return max

Running time of HEAP-EXTRACT-MAX: $\Theta(\lg n)$

ullet One call to Heapify + constant amount of other work

What about insertion?

• Put new element at the bottom of the heap and then percolate it up until it gets to the proper place.

HEAP-INSERT(A, x)

```
\begin{array}{ll} 1 & heap\text{-}size[A] \leftarrow heap\text{-}size[A] + 1 \\ 2 & i \leftarrow heap\text{-}size[A] \\ 3 & \textbf{while} \ i > 1 \ \text{and} \ A[\text{Parent}(i)] < x \\ 4 & \textbf{do} \ A[i] \leftarrow A[\text{Parent}(i)] \\ 5 & i \leftarrow \text{Parent}(i) \\ 6 & A[i] \leftarrow x \end{array}
```

- Running time of Heap-Insert: $\Theta(\lg n)$
 - \circ We go through the loop at most $\lg n$ times, as we go from the leaf to the root

Heapsort

We can also use heaps for sorting:

If we build a heap using Build-Heap, the heap property guarantees

- the largest element will be first.
- the two subtrees of the root are heaps

Now if we switch the first and last elements:

- the last element is the largest (which is what we want in a sorted array)
- since the children of the root are still heaps, we can use Heapify

HEAPSORT(A)

```
1 Build-Heap(A)

2 for i \leftarrow length[A] downto 2

3 do exchange A[1] \leftrightarrow A[i]

4 heapsize[A] \leftarrow heapsize[A] - 1

5 Heapify(A, 1)
```

Running time of HEAPSORT is $O(n \lg n)$

- One call to Build-Heap: O(n)
- n-1 calls to Heapify, each one is $O(\lg n)$