The plan for this week

I'm going to review (since you should have seen it in
CS211) some basic data structures:

o stacks
® queues
e linked lists
e trees
Then T’ll go into more details on hashing.

e You probably saw that in CS211 too, but T’ll
cover it in more depth.

Stack Operations

STACK-EMPTY(S)

1 if top(S) =0
2 then return TRUE
3 else return FALSE

PusH(S, z)

1 top(S) + top(S) +1
2 Sltop[S]] « =

Por(S)

1 if top(S) = 0 then return error “underflow”
2 top(S) « top(S) — 1
3 return S[top(S) + 1]

e All these operations run in time O(1)

Stacks

Stacks support

e INSERT = Pusu

e DELETE(MAXIMUM) = Pop

o test for emptiness: STACK-EMPTY
Stacks are implemented as arrays

e new elements are inserted at the end

e top[S] is the length of the array

¢ elements are retrieved from the end

o LIFO: last in, first out

Queues

Queues support
e INSERT = ENQUEUE
e DELETE(MINIMUM) = DEQUEUE
Queues are implemented as arrays
e Have two indices: head and tail
e new elements are inserted at the tail
e elements are retrieved from the head

o FIFO: first in, first out

Queue Operations

ENQUEUE(Q, x)

1 Qtail|Q]] — =

2 if tail[Q] = length[Q)

3 then tail[Q] < 1 [wraparound]
4 else taillQ] — taill Q] + 1

DEQUEUE(Q)

1 2 Qlhead Q]

2 if head|Q] = length|Q]

3 then head|Q] — 1 [wraparound]
4 else head[Q] < head]@] + 1

5

return

(We're ignoring error conditions here.)

e ENQUEUE, DEQUEUE also run in O(1) time.

Implementing Linked Lists

How do we implement linked lists in languages with-
out pointers?

e Techniques useful even without pointers
Assuming no additional data, could use three arrays:

o key, next, prev

If keys have different sizes (or there is additional
data), may be more efficient to use a single array:

e An entry is a contiguous part of the array A[j..k]

o key is located at A[j], next pointer is in A[j + 1],
previsin A[j+2], rest of the data is in A[j+3, k].

Linked Lists

There are many operations on dynamic sets that
can’t be performed on Stacks and Queues (without
implementing extra operations)

e E.g., searching, inserting

Linked lists are simple data structures that let us
implement them all (not necessarily efficiently)

e doubly linked list: each entry contains a key, two
pointers (next and prev), and perhaps other data

o if next(x) = NIL then z has no successor
o if prev(z) = NIL then z has no predecessor

e singly linked list: no prev pointer
o head[L]/tail[L] is the first/last element of L;
o can access L only by the head and tail
o prev(head[L]) = nezt(tailL]) = NIL
o circular list: next(tailL]) = head[L];
prev(head[L]) = tail[L]

6

Allocation and Free Lists

Suppose we use an array (or several arrays) of length
n to represent a linked list.

e Where in the array do we put a new element?

e Can’t just use an initial segment of the array,
because elements are getting deleted as well as
inserted.

If each record (element) takes a fixed amount of
space, can use a free list to keep track of free slots
in the array.

e the free list is best implemented as a stack

o PoP a slot when you need to insert an element

o PusH a slot after its element has been deleted

Searching and Inserting in Linked
Lists

To search a list for key k, start at the head and work
towards the tail:

LisT-SEARCH(L, k)

1 z < head[L]

2 while z # NIL and key[z] # k
3 do = « nexi[z]

4 return z

If £ is not in the list, then we return NIL.

e Takes time O(n) if k is not in the list

Insert a new element at the head:

L1sT-INSERT(L, z)

next[z] < head[L]

if head[L] # NIL [list is not empty]
then prevjhead[L]] — z

head[L] — x

prev[z] « NIL

Uk W N =

Representing Rooted Trees

Suppose we have a (rooted) binary tree. Then can
use something like a linked list:

e head points to the root
e prev]z] points to the (unique) parent of x
¢ instead of next, have left-child and right-child
o x has two successors, not one
Similar ideas work for k-ary trees, if k is bounded.
What happens if we have no bound on the branching
factor of the tree?

e Hard to allocate space upfront if we represent
each child explicitly

e Even if we have an upper bound of k, but most
nodes have fewer than k children, there will be
lots of wasted space.

11

Deletion in Linked Lists

To delete z, edit it out of the list:

LisT-DELETE(L, z)

1 if prev[z] # NIL

2 then neztprev(z]] — nezt[z]

3 else head[L] — next[x]

4 if next[z] # NIL

5 then prevnezt[z]] — prev|z]

Deletion takes O(1) for doubly-linked lists
e It’s important here that x is a pointer, not a key
o If it’s a key, deletion take O(n)

Deletion takes O(n) for singly-linked lists

e Problem: need to find the predecessor of z so
that next[predecessor] can be set to next[x].

10

Left-child Right-sibling
representation

Left-child right-sibling representation

o This uses only O(n) space for an n-node tree.

12

Direct-Address Tables

Suppose we want to implement a dictionary

o INSERT, DELETE, SEARCH

Assume keys are drawn from {0,1,...,m —1}
e m is “not too large”
e all keys distinct

Can just use an array T[0..m — 1]
e T'[k] points to element with key k
e T'[k] = NIL if there is no element with key &
e insertion, deletion, and search are all trivial

o O(1) worst-case time

Problem: what happens if m is large?

e storing a table of size m may be impractical (or
impossible)

13

Collision Resolution by Chaining

In chaining, put all the elements that hash to the
same slot in a linked list.

e Slot j has a pointer to the head of a linked list
containing all the elements that hash to j

o If there aren’t any elements that hash to j, slot
J contains NIL.
Simple algorithms for dictionary operations:
CHAINED-HASH-INSERT(T, z)
1 insert z at the head of list T[h(key[z])]

CHAINED-HASH-SEARCH(T, k)

Basically just linked-list search (see LisT-SEARCH(L, k))
1 y—T[h(k)] T[h(k)]is the head of the linked list

2 while y # NIL or keyly] # k
3 do y «— nezt[y]
4 return y

CHAINED-HASH-DELETE(T), z)
1 delete z from the list T'[h(key[z])]

15

Hash Tables

The idea of using key[z] to determine where z is
stored is good.

e Keys are drawn from universe U

e Hash function h: U — {1,...,m}
o k hashes to h(k)

e Array has length m instead of |U]|

o Problem: What happens of h(k) = h(k')? A
collision!

e A good hash function minimizes the chances of
collisions

o Can’t avoid them altogether if |[U| > m

e A good implementation of hashing minimizes the
impact of collisions

14

o Insertion is O(1)

e Deletion is O(1) for doubly-linked lists, O(e) for
singly-linked lists, where e is number of elements
in list

e Searching is also O(e) ...

16

Analysis of Hashing with Chaining

If a table T" has m slots and n keys are stored, the
load factor of T is o = n/m:

e the average number of elements per slot
e the average number of elements in a list

The worst-case behavior of hashing is like that of
linked lists:

e happens if all keys are hashed to the same slot

Assume that each element is equally likely to hash
into any slot.

e simple uniform hashing

17

Choosing a Good Hash Function

We want a hash function for which each key is equally
likely to hash to any slot no matter how keys are dis-
tributed.

e E.g.: if keys are identifiers in a program, closely
related symbols are likely to occur (pt and pts)

Sometimes want keys that are “close” to yield hash
values that are far apart.

19

Theorem: Using hashing with chaining, a search
(successful or unsuccesful) takes time O(a + 1) on
average, assuming simple uniform hashing.

Proof: Every key is equally likely to hash to any
slot.

e the average length of a list is «

e in an unsuccesful search, we need to look at all
of them

e in a successful search, on average, we look at half
of them

If n = O(m), then a = O(1) and searching is fast.
e Hashing is great for dictionary operations

e Not so good for max and min

18

The Division Method

Assumption: All keys are natural numbers.
e Can convert names to numbers using a standard
translation
Division Method: h(k) = k mod m
e if m = 12, then h(100) = h(16) =4
Bad choices for m:

e m = 2” means that h(k) is the p lower-order bits
(if k is written base 2)

o can be bad if not all patterns equally likely
e m = 107 is bad if k is written base 10
Good choice for m: a prime number

o If you have an estimate n for |U|, and a tolerable
load factor «, choose a prime m ~ n/«a

20

The Multiplication Method

The Multiplication Method:
h(k) = [m(kA mod 1) |

Explanation:

1. Choose a fixed constant A with 0 < A < 1, com-
pute kA

2. kA mod 1 is the fractional part of kA
3. multiply this by m and take the floor of the an-
swer
Example: Suppose A =7/10, m =75
o h(117) = |5(819/10 mod 1)| = |5(9/10)| = 4

Almost any choice of A and m will work but ...

e Choosing m a power of 2 (m = 2P) makes for easy
implementation

e Choose A so that, if rational, its denominator is
>m

e Knuth suggests A =~ (v/5 —1)/2

21

Theorem: If h € H is chosen randomly and is used
to hash n keys into a table of size m, the expected
of collisions involving z is (n — 1)/m.

Proof: Let C,. be a random variable (on H) such
that

e Cy.(h) = 11if h(y) = h(z), 0 otherwise
Since H is universal, E(C,,) = 1/m
Let C, be the total # of collisions involving z:

y#z

B(C;) = 2 B(Cn) = (n=1)/m

23

Universal Hashing

If T know your hash function, then I can choose n
keys that all hash to the same slot.

Better idea:

e Choose the hash function randomly, so that no
malicious adversary can foil you

e That’s what universal hashing [Carter-Wegman)|
is all about

Formally, let H be a set of hash functions.

e H is universal if, for all z, y, the number of hash

functions h such that h(z) = h(y) is |H|/m

o Therefore, if h € H is chosen randomly, the prob-
ability that h(z) = h(y) is 1/m

o 1/m functions cause a collision, (m — 1)/m
don’t

e This is exactly the chance of a collision if h(x) and
h(y) are chosen randomly from {0,...,m — 1}

Universal hashing is good even if we don’t assume
that the inputs are uniformly distributed.

22

Are there universal classes of hash functions?
If so, how hard are they to implement?

Not hard, if we assume a known upper bound on key
size:

e Let m be prime.

e Suppose k can be written as (ko,. .., k) for some

r, where 0 < k; <r

o h(ao,...,ar)(kOa . ,kr) = Ez-n:() aiki

r+1

o There are m""" such functions

Theorem: This set of hash functions is universal.

24

Open Addressing

Idea of open addressing;:
e all elements are stored in the hash table
e no pointers, no linked lists
¢ by not having pointers, can afford to have a larger
hash table
So where do we put elements if there is a collision?
e Idea: have first choice, second choice, etc.
® Probe the hash table until we find a free slot

Formally, to hash from U to {0,...,m—1}, consider
hash functions of the form:

h:Ux{0,...,m—1} = {0,...,m—1}
e h(k,7) is (j + 1)th place to look for/insert key k
e Want h(k,0),...,h(k,m — 1) to all be different

o (h(k,0),...,h(k,m — 1)) is a permutation of
{0,...,m—1}

25

