The plan for this week

I'm going to review (since you should have seen it in CS211) some basic data structures:

- stacks
- queues
- linked lists
- trees

Then I'll go into more details on hashing.

• You probably saw that in CS211 too, but I'll cover it in more depth.

Stacks

Stacks support

- Insert = Push
- Delete(Maximum) = Pop
- test for emptiness: STACK-EMPTY

Stacks are implemented as arrays

- new elements are inserted at the end
- top[S] is the length of the array
- elements are retrieved from the end
 - o LIFO: last in, first out

Stack Operations

STACK-EMPTY(S)

- 1 if top(S) = 0
- 2 then return True
- 3 else return False

Push(S, x)

- $1 \ top(S) \leftarrow top(S) + 1$
- $2 \quad S[top[S]] \leftarrow x$

Pop(S)

- 1 if top(S) = 0 then return error "underflow"
- $2 \quad top(S) \leftarrow top(S) 1$
- 3 return S[top(S) + 1]
 - All these operations run in time O(1)

Queues

Queues support

- Insert = Enqueue
- Delete(Minimum) = Dequeue

Queues are implemented as arrays

- Have two indices: head and tail
- new elements are inserted at the tail
- elements are retrieved from the head
 - o FIFO: first in, first out

Queue Operations

```
\begin{array}{l} \operatorname{Enqueue}(Q,x) \\ 1 \quad Q[tail[Q]] \leftarrow x \\ 2 \quad \text{if } tail[Q] = length[Q] \\ 3 \quad \text{then } tail[Q] \leftarrow 1 \quad [\text{wraparound}] \\ 4 \quad \text{else } tail[Q] \leftarrow tail[Q] + 1 \\ \\ Dequeue(Q) \\ 1 \quad x \leftarrow Q[head[Q]] \\ 2 \quad \text{if } head[Q] = length[Q] \\ 3 \quad \text{then } head[Q] \leftarrow 1 \quad [\text{wraparound}] \\ 4 \quad \text{else } head[Q] \leftarrow head[Q] + 1 \\ 5 \quad \text{return } x \\ (\text{We're ignoring error conditions here.}) \end{array}
```

• ENQUEUE, DEQUEUE also run in O(1) time.

Linked Lists

There are many operations on dynamic sets that can't be performed on Stacks and Queues (without implementing extra operations)

• E.g., searching, inserting

Linked lists are simple data structures that let us implement them all (not necessarily efficiently)

- doubly linked list: each entry contains a key, two pointers (next and prev), and perhaps other data
 - \circ if next(x) = NIL then x has no successor
 - \circ if prev(x) = NIL then x has no predecessor

- singly linked list: no prev pointer
- head[L]/tail[L] is the first/last element of L;
 - \circ can access L only by the head and tail
 - $\circ \ prev(head[L]) = next(tail[L]) = nil$
- $\begin{array}{l} \bullet \ circular \ list: \ next(tail[L]) = head[L]; \\ prev(head[L]) = tail[L] \end{array}$

Implementing Linked Lists

How do we implement linked lists in languages without pointers?

• Techniques useful even without pointers

Assuming no additional data, could use three arrays:

• key, next, prev

If keys have different sizes (or there is additional data), may be more efficient to use a single array:

- An entry is a contiguous part of the array A[j..k]
- key is located at A[j], next pointer is in A[j+1], prev is in A[j+2], rest of the data is in A[j+3,k].

Allocation and Free Lists

Suppose we use an array (or several arrays) of length n to represent a linked list.

- Where in the array do we put a new element?
- Can't just use an initial segment of the array, because elements are getting deleted as well as inserted.

If each record (element) takes a fixed amount of space, can use a *free list* to keep track of free slots in the array.

- the free list is best implemented as a stack
 - Pop a slot when you need to insert an element
 - o Push a slot after its element has been deleted

Searching and Inserting in Linked Lists

To search a list for key k, start at the head and work towards the tail:

List-Search(L, k)

- 1 $x \leftarrow head[L]$
- 2 while $x \neq \text{NIL}$ and $key[x] \neq k$
- 3 **do** $x \leftarrow next[x]$
- 4 return x

If k is not in the list, then we return NIL.

• Takes time O(n) if k is not in the list

Insert a new element at the head:

LIST-INSERT(L, x)

- $1 \quad next[x] \leftarrow head[L]$
- 2 if $head[L] \neq NIL$ [list is not empty]
- 3 then $prev[head[L]] \leftarrow x$
- $4 \ head[L] \leftarrow x$
- $5 \ prev[x] \leftarrow \text{NIL}$

Deletion in Linked Lists

To delete x, edit it out of the list:

List-Delete(L, x)

- 1 if $prev[x] \neq NIL$
- 2 **then** $next[prev[x]] \leftarrow next[x]$
- 3 **else** $head[L] \leftarrow next[x]$
- 4 if $next[x] \neq NIL$
- 5 then $prev[next[x]] \leftarrow prev[x]$

Deletion takes O(1) for doubly-linked lists

- It's important here that x is a pointer, not a key
- If it's a key, deletion take O(n)

Deletion takes O(n) for singly-linked lists

• Problem: need to find the predecessor of x so that next[predecessor] can be set to next[x].

Representing Rooted Trees

Suppose we have a (rooted) binary tree. Then can use something like a linked list:

- head points to the root
- prev[x] points to the (unique) parent of x
- instead of next, have left-child and right-child
 - $\circ x$ has two successors, not one

Similar ideas work for k-ary trees, if k is bounded.

What happens if we have no bound on the branching factor of the tree?

- Hard to allocate space upfront if we represent each child explicitly
- Even if we have an upper bound of k, but most nodes have fewer than k children, there will be lots of wasted space.

Left-child Right-sibling representation

Left-child right-sibling representation

• This uses only O(n) space for an n-node tree.

Direct-Address Tables

Suppose we want to implement a dictionary

• Insert, Delete, Search

Assume keys are drawn from $\{0, 1, \dots, m-1\}$

- m is "not too large"
- all keys distinct

Can just use an array T[0..m-1]

- T[k] points to element with key k
- T[k] = NIL if there is no element with key k
- insertion, deletion, and search are all trivial $\circ O(1)$ worst-case time

Problem: what happens if m is large?

 \bullet storing a table of size m may be impractical (or impossible)

Hash Tables

The idea of using key[x] to determine where x is stored is good.

- \bullet Keys are drawn from universe U
- Hash function $h: U \to \{1, \ldots, m\}$
 - $\circ k \ hashes \ to \ h(k)$
- Array has length m instead of |U|
 - Problem: What happens of h(k) = h(k')? A collision!
- A good hash function minimizes the chances of collisions
 - \circ Can't avoid them altogether if |U| > m
- A good implementation of hashing minimizes the impact of collisions

Collision Resolution by Chaining

In *chaining*, put all the elements that hash to the same slot in a linked list.

- Slot j has a pointer to the head of a linked list containing all the elements that hash to j
- If there aren't any elements that hash to j, slot j contains NIL.

Simple algorithms for dictionary operations:

Chained-Hash-Insert(T, x)

1 insert x at the head of list T[h(key[x])]

Chained-Hash-Search(T, k)

Basically just linked-list search (see List-Search(L, k))

- 1 $y \leftarrow T[h(k)]$ T[h(k)] is the head of the linked list
- 2 while $y \neq \text{NIL or } key[y] \neq k$
- 3 **do** $y \leftarrow next[y]$
- 4 return y

Chained-Hash-Delete(T, x)

1 delete x from the list T[h(key[x])]

- Insertion is O(1)
- Deletion is O(1) for doubly-linked lists, O(e) for singly-linked lists, where e is number of elements in list
- Searching is also O(e) ...

Analysis of Hashing with Chaining

If a table T has m slots and n keys are stored, the load factor of T is $\alpha = n/m$:

- the average number of elements per slot
- the average number of elements in a list

The worst-case behavior of hashing is like that of linked lists:

- happens if all keys are hashed to the same slot Assume that each element is equally likely to hash into any slot.
 - simple uniform hashing

Theorem: Using hashing with chaining, a search (successful or unsuccessful) takes time $O(\alpha + 1)$ on average, assuming simple uniform hashing.

Proof: Every key is equally likely to hash to any slot.

- the average length of a list is α
- in an unsuccesful search, we need to look at all of them
- in a successful search, on average, we look at half of them

If n = O(m), then $\alpha = O(1)$ and searching is fast.

- Hashing is great for dictionary operations
- Not so good for max and min

Choosing a Good Hash Function

We want a hash function for which each key is equally likely to hash to any slot no matter how keys are distributed.

• E.g.: if keys are identifiers in a program, closely related symbols are likely to occur (pt and pts)

Sometimes want keys that are "close" to yield hash values that are far apart.

The Division Method

Assumption: All keys are natural numbers.

• Can convert names to numbers using a standard translation

Division Method: $h(k) = k \mod m$

• if m = 12, then h(100) = h(16) = 4

Bad choices for m:

• $m = 2^p$ means that h(k) is the p lower-order bits (if k is written base 2)

o can be bad if not all patterns equally likely

• $m = 10^p$ is bad if k is written base 10

Good choice for m: a prime number

• If you have an estimate n for |U|, and a tolerable load factor α , choose a prime $m \sim n/\alpha$

The Multiplication Method

The Multiplication Method:

$$h(k) = \lfloor m(kA \bmod 1) \rfloor$$

Explanation:

- 1. Choose a fixed constant A with 0 < A < 1, compute kA
- 2. $kA \mod 1$ is the fractional part of kA
- 3. multiply this by m and take the floor of the answer

Example: Suppose A = 7/10, m = 5

•
$$h(117) = \lfloor 5(819/10 \mod 1) \rfloor = \lfloor 5(9/10) \rfloor = 4$$

Almost any choice of A and m will work but ...

- Choosing m a power of 2 $(m = 2^p)$ makes for easy implementation
- Choose A so that, if rational, its denominator is > m
- Knuth suggests $A \approx (\sqrt{5} 1)/2$

Universal Hashing

If I know your hash function, then I can choose n keys that all hash to the same slot.

Better idea:

- Choose the hash function randomly, so that no malicious adversary can foil you
- That's what universal hashing [Carter-Wegman] is all about

Formally, let \mathcal{H} be a set of hash functions.

- \mathcal{H} is universal if, for all x, y, the number of hash functions h such that h(x) = h(y) is $|\mathcal{H}|/m$
- Therefore, if $h \in \mathcal{H}$ is chosen randomly, the probability that h(x) = h(y) is 1/m
 - $\circ 1/m$ functions cause a collision, (m-1)/m don't
- This is exactly the chance of a collision if h(x) and h(y) are chosen randomly from $\{0, \ldots, m-1\}$

Universal hashing is good even if we don't assume that the inputs are uniformly distributed. **Theorem:** If $h \in \mathcal{H}$ is chosen randomly and is used to hash n keys into a table of size m, the expected # of collisions involving x is (n-1)/m.

Proof: Let C_{yz} be a random variable (on \mathcal{H}) such that

• $C_{yz}(h) = 1$ if h(y) = h(z), 0 otherwise

Since \mathcal{H} is universal, $E(C_{yz}) = 1/m$

Let C_x be the total # of collisions involving x:

$$C_x = \sum_{y \neq x} C_{xy}$$

$$E(C_x) = \sum_{y \neq x} E(C_{xy}) = (n-1)/m$$

Are there universal classes of hash functions? If so, how hard are they to implement?

Not hard, if we assume a known upper bound on key size:

- Let m be prime.
- Suppose k can be written as (k_0, \ldots, k_r) for some r, where $0 \le k_i \le r$
- Hash function has form $h_{(a_0,...,a_r)}$, $0 \le a_i \le m-1$

$$h_{(a_0,...,a_r)}(k_0,...,k_r) = \sum_{i=0}^r a_i k_i$$

 \circ There are m^{r+1} such functions

Theorem: This set of hash functions is universal.

Open Addressing

Idea of open addressing:

- all elements are stored in the hash table
- no pointers, no linked lists

 $\{0,\ldots,m-1\}$

• by not having pointers, can afford to have a larger hash table

So where do we put elements if there is a collision?

- Idea: have first choice, second choice, etc.
- Probe the hash table until we find a free slot

Formally, to hash from U to $\{0, \ldots, m-1\}$, consider hash functions of the form:

$$h: U \times \{0, \dots, m-1\} \to \{0, \dots, m-1\}$$

- h(k,j) is (j+1)th place to look for/insert key k
- Want $h(k,0), \ldots, h(k,m-1)$ to all be different $o(h(k,0), \ldots, h(k,m-1))$ is a permutation of