The plan for this week

I'm going to review (since you should have seen it in
(CS211) some basic data structures:

e stacks
® queues
e linked lists
e trees
Then I'll go into more details on hashing.

e You probably saw that in CS211 too, but I’ll
cover it in more depth.

Stacks

Stacks support

e INSERT = PUsSH

e DELETE(MAXIMUM) = PoP

e test for emptiness: STACK-EMPTY
Stacks are implemented as arrays

e new elements are inserted at the end

e top|S] is the length of the array

e clements are retrieved from the end

o LIFO: last in, first out

Stack Operations

STACK-EMPTY(S)

1 if top(S) =0
2 then return TRUE
3 else return FALSE

PUsH(S, x)

1 top(S) « top(S) +1
2 Sltop|S]] «+ =

Popr(95)

1 if top(S) = 0 then return error “underflow”
2 top(S) « top(S) — 1
3 return S[top(S) + 1]

e All these operations run in time O(1)

Queues

Queues support

e INSERT = ENQUEUE

¢ DELETE(MINIMUM) = DEQUEUE
Queues are implemented as arrays

e Have two indices: head and tail

e new elements are inserted at the tail

e clements are retrieved from the head

o FIFO: first in, first out

Queue Operations

ENQUEUE(Q, x)

1 Qtail|Q]] — =

2 if tail|Q] = length|Q]

3 then taillQ] — 1 [wraparound]
4 else tail[Q] «+ tail]Q] + 1

DEQUEUE(Q)

z + Q[head[Q]]
if head|Q] = length|Q]

1
2
3 then head|Q] 1 [wraparound]
4 else head[Q] — head[Q] + 1

5

return x

(We're ignoring error conditions here.)

e ENQUEUE, DEQUEUE also run in O(1) time.

Linked Lists

There are many operations on dynamic sets that
can’t be performed on Stacks and Queues (without
implementing extra operations)

e [.g., searching, inserting

Linked hists are simple data structures that let us
implement them all (not necessarily efficiently)

e doubly linked list: each entry contains a key, two
pointers (next and prev), and perhaps other data

o if mezrt(z) = NIL then x has no successor

o if prev(x) = NIL then x has no predecessor

o singly linked list: no prev pointer

e head|L]/tail[L] is the first /last element of L;
o can access L only by the head and tail
o prev(head|L)) = next(tail[L]) = NIL

e circular list: next(taillL]) = head|L];
prev(head|L]) = tail| L]

Implementing Linked Lists

How do we implement linked lists in languages with-
out pointers?

e Techniques useful even without pointers
Assuming no additional data, could use three arrays:

e key, next, prev

If keys have different sizes (or there is additional
data), may be more efficient to use a single array:

e An entry is a contiguous part of the array A|j..k]

e key is located at A[j], next pointer is in A[j + 1],
previsin A[j+ 2], rest of the data is in A[j+ 3, k].

Allocation and Free Lists

Suppose we use an array (or several arrays) of length
n to represent a linked list.

e Where in the array do we put a new element?

e Can’t just use an initial segment of the array,
because elements are getting deleted as well as
inserted.

If each record (element) takes a fixed amount of
space, can use a free list to keep track of free slots
in the array.

e the free list is best implemented as a stack

o POP a slot when you need to insert an element

o PUSH a slot after its element has been deleted

Searching and Inserting in Linked
Lists

To search a list for key k, start at the head and work
towards the tail:

LisT-SEARCH(L, k)

1 x < head|L]

2 while x # NIL and key|x| # k
3 do = «+ next|z]

4 return z

If £ is not in the list, then we return NIL.

e Takes time O(n) if k is not in the list

Insert a new element at the head:
LisT-INSERT(L, x)

1 next|z] < head|L]

2 if head|L] # NIL [list is not empty]
3 then prevjhead|L]] + x

4 head|L] +— x

5 prev[x] < NIL

Deletion in Linked Lists

To delete x, edit it out of the list:
LisT-DELETE(L, x)

1 if prev|z] # NIL

2 then nezt|prev|z]] <+ next|z]

3 else head|L] « next|x]

4 if next|x] # NIL

5 then prev|next[x]| « prev|x]

Deletion takes O(1) for doubly-linked lists
e It’s important here that x is a pointer, not a key
o If it’s a key, deletion take O(n)

Deletion takes O(n) for singly-linked lists

e Problem: need to find the predecessor of x so
that next|predecessor]| can be set to next|x].

10

Representing Rooted Trees

Suppose we have a (rooted) binary tree. Then can
use something like a linked list:

e head points to the root

e prev[x| points to the (unique) parent of z

e instead of next, have left-child and right-child
o x has two successors, not one

Similar ideas work for k-ary trees, if k£ is bounded.

What happens if we have no bound on the branching
factor of the tree?

e Hard to allocate space upfront if we represent
each child explicitly

e Even if we have an upper bound of k£, but most
nodes have fewer than k children, there will be
lots of wasted space.

11

Left-child Right-sibling
representation

Left-child right-sibling representation

e This uses only O(n) space for an n-node tree.

12

Direct-Address Tables

Suppose we want to implement a dictionary

e INSERT, DELETE, SEARCH

Assume keys are drawn from {0,1,...,m — 1}
e m is “not too large”
e all keys distinct

Can just use an array T[0..m — 1]
e T'[k] points to element with key k
e T'[k] = NIL if there is no element with key k
e insertion, deletion, and search are all trivial

o O(1) worst-case time

Problem: what happens if m is large?

e storing a table of size m may be impractical (or
impossible)

13

Hash Tables

The idea of using key|x] to determine where x is
stored is good.

e Keys are drawn from universe U
e Hash function h : U — {1,...,m}
o k hashes to h(k)
e Array has length m instead of |U|
o Problem: What happens of h(k) = h(k')? A

collision!

e A good hash function minimizes the chances of
collisions

o Can’t avoid them altogether if |U| > m

e A good implementation of hashing minimizes the
impact of collisions

14

Collision Resolution by Chaining

In chaining, put all the elements that hash to the
same slot in a linked list.

e Slot 5 has a pointer to the head of a linked list
containing all the elements that hash to j

o If there aren’t any elements that hash to j, slot

7 contalns NIL.

Simple algorithms for dictionary operations:

CHAINED-HASH-INSERT(T, x)
1 insert = at the head of list T'[h(key|x])]

CHAINED-HASH-SEARCH(T, k)
Basically just linked-list search (see L1ST-SEARCH(L, k))

1 y«< T[h(k)] T[h(k)]is the head of the linked list
2 while y # NIL or keyly| # k

3 do y « next|y]

4 return y

CHAINED-HASH-DELETE(T, x)
1 delete x from the list T|h(key|z])]

15

e Insertion is O(1)

e Deletion is O(1) for doubly-linked lists, O(e) for

singly-linked lists, where e is number of elements
in list

e Searching is also O(e) ...

16

Analysis of Hashing with Chaining

If a table T has m slots and n keys are stored, the
load factor of T is o = n/m:

e the average number of elements per slot
e the average number of elements in a list

The worst-case behavior of hashing is like that of
linked lists:

e happens if all keys are hashed to the same slot

Assume that each element is equally likely to hash
into any slot.

o simple uniform hashing

17

Theorem: Using hashing with chaining, a search
(successful or unsuccesful) takes time O(«a + 1) on
average, assuming simple uniform hashing.

Proof: Every key is equally likely to hash to any
slot.

e the average length of a list is «

e in an unsuccesful search, we need to look at all
of them

e in a successtul search, on average, we look at half
of them

If n = O(m), then a = O(1) and searching is fast.
e Hashing is great for dictionary operations

e Not so good for max and min

18

Choosing a Good Hash Function

We want a hash function for which each key is equally
likely to hash to any slot no matter how keys are dis-
tributed.

e E.g.: if keys are identifiers in a program, closely
related symbols are likely to occur (pt and pts)

Sometimes want keys that are “close” to yield hash
values that are far apart.

19

The Division Method

Assumption: All keys are natural numbers.

e Can convert names to numbers using a standard
translation

Division Method: h(k) = kK mod m
o if m = 12, then h(100) = h(16) =4
Bad choices for m:

e m = 2P means that h(k) is the p lower-order bits
(if k is written base 2)

o can be bad if not all patterns equally likely
e m = 107 is bad if k£ is written base 10
Good choice for m: a prime number

e If you have an estimate n for |U|, and a tolerable
load factor «, choose a prime m ~ n/«a

20

The Multiplication Method

The Multiplication Method:
h(k) = |m(kA mod 1) |

Explanation:

1. Choose a fixed constant A with 0 < A < 1, com-
pute kA

2. kA mod 1 is the fractional part of kA

3. multiply this by m and take the floor of the an-
swer

Example: Suppose A =7/10, m =5
o h(117) = |5(819/10 mod 1)| = |5(9/10)| = 4

Almost any choice of A and m will work but ...

e Choosing m a power of 2 (m = 2P) makes for easy
implementation

e Choose A so that, if rational, its denominator is
> m

e Knuth suggests A ~ (/5 —1)/2

21

Universal Hashing

If I know your hash function, then I can choose n
keys that all hash to the same slot.

Better idea:

e Choose the hash function randomly, so that no
malicious adversary can foil you

e That’s what universal hashing [Carter-Wegman]
is all about

Formally, let H be a set of hash functions.

o H is unwersal if, for all x, y, the number of hash
functions h such that h(x) = h(y) is |[H|/m

e Therefore, if h € 'H is chosen randomly, the prob-
ability that h(x) = h(y) is 1/m

o 1/m functions cause a collision, (m — 1)/m
don’t

e This is exactly the chance of a collision if A(x) and
h(y) are chosen randomly from {0,...,m — 1}

Universal hashing is good even if we don’t assume
that the inputs are uniformly distributed.

22

Theorem: If h € H is chosen randomly and is used
to hash n keys into a table of size m, the expected
of collisions involving x is (n — 1)/m.

Proof: Let C,. be a random variable (on H) such
that

o C,.(h) =1if h(y) = h(2), 0 otherwise
Since H is universal, E(C,,) = 1/m
Let C, be the total # of collisions involving x:
Ce= 5O

E(C;) = £ E(Cy) = (n—1)/m

23

Are there universal classes of hash functions?
If so, how hard are they to implement?

Not hard, if we assume a known upper bound on key
size:

e Let m be prime.

e Suppose k can be written as (ko, ..., k,) for some
r, where 0 < k; <r

e Hash function has form h,, . 4, 0 < a; <m —1

© h(ao,...,aT)(koa JOR kr) = Yi_g aik;

|

o There are m"t! such functions

Theorem: This set of hash functions is universal.

24

Open Addressing

Idea of open addressing:
e all elements are stored in the hash table
e no pointers, no linked lists
e by not having pointers, can afford to have a larger
hash table
So where do we put elements if there is a collision?

e Idea: have first choice, second choice, etc.

e Probe the hash table until we find a free slot

Formally, to hash from U to {0,...,m—1}, consider
hash functions of the form:
h:Ux{0,...,m—1} —-{0,...,m—1}
e h(k,7) is (j + 1)th place to look for/insert key k
e Want h(k,0),...,h(k,m — 1) to all be different

o (h(k,0),...,h(k,m — 1)) is a permutation of
{0,...,m—1}

25

