CS 409: Data Structures and
Algorithms

Instructor: Joe Halpern

There’s a handout that tells you everything you need
to know for now about the course structure:

e TAs and consultants
e Office hours

e Grading

o Text

e How to find out more

o Check the course web site and newsgroup!

Required Background

I will assume you know basic properties of:
e Basic functions (|z], lgn, 2", n!) (Ch. 2.2)
e Summations (Ch. 3)

o Summation notation: £}_; k
o Technique for bounding sums: 7_, k < n?.

% including approximation by integrals
e Sets, relations, functions, graphs, trees (Ch. 5)

o manipulating intersection, union, complement

o reflexive, symmetric, transitive relations

o injection, bijection, one-to-one correspondence

o degree, connected component, (un)directed graph
o binary trees

e Counting and Probability (Chapter 6.1-6.4)

o choosing k out of n

o axioms of probability

o conditional probability and independence
o expected value

o binomial distribution

3

What’s It All About?

In a nutshell:

e designing and analyzing algorithms for solving
computational problems.

Such algorithms deal with data.
e That means we need good data structures

o ways of storing and accessing the data to make
the algorithm efficient

We consider some key data structures and efficient
ways of implementing them:

e stacks, queues, linked lists, hash tables, binary
search trees, binomial heaps, ...

Data structures are the building blocks for many al-
gorithms, so it’s worth optimizing them.

We apply data structures to important problems (graph
algorithms, sorting, prioritizing, string matching, .. .)

Programming is an important component of this course!

A word to the wise:
e Review this material NOW!
e Make sure you can do all the review problems
e See me or someone else on staff if you can’t
(CS211 is a prerequisite for the course.
e There is some overlap in topics covered

o I will cover some topics in greater depth (e.g.,
hashing) , and briefly review others (e.g., breadth-
first and depth-first search)

(CS280 is also a prerequisite:

e You need to know how to do induction

e We will cover Minimum Spanning Trees and Di-
jkstra’s algorithm (sometimes done in CS280)

An Example: Sorting

Given: A sequence of n numbers (ay,...,an)

Output: A permutation (reordering) (a},...,al)
such that a} < ... <a.

A naive (but common) approach: Insertion Sort.

e Assume we’ve sorted the first k£ elements; put the
(k+ 1)st element into the right place by compar-
ing it until we find the right place for it.

Running Time of Insertion Sort

Assume step ¢ in the algorithm “costs” ¢;
Let t; be number of times jth inner loop is executed

e t; depends on the input A
® best case: t; =1

e worst case: t; =

1 for j «— 2 to length[A] a n
2 do key «— A[j] ¢ n-—1
3 > Insert A[j] into sorted
sequence A[1..j —1]. 0 n—1
4 1+—7—1 cy n—1
5 while i > 0 and A[1] > key ¢; T} ,t;
6 do A[i + 1] + A[{] e Yoty —1)
7 1—1—1 C7 E;-l:2(tj — 1)
8 Afi + 1] « key g n—1

Let T(A) be the running time on input A:

n—1
T(A) = ein+(cateategs—cg—cr)(n—1)+(cs+cs+er) _Z] t;
i=

Suppose A = (ay,...,a,) is an array to be sorted.

L A[’L] = a;

INSERTTON-SORT(A)

1 for j < 2 to length|A]
do key — A[j]
> Insert A[j] into sorted sequence A[l..j — 1J.
1—j—1
while ¢ > 0 and A[i] > key
do A[i + 1] — A[{]
1+—1—1
At + 1] « key

\]

0~ O Ot i W

Suppose A = (5,2,4,6,1).
52 4 6 1 j=2 key=2

2 5 4 6 1 j=3key=4
2 45 6 1 j=d4dkey=6

2 4 5 6 1 j=5key=1

T(A) = eyn+(catcatcs—cg—cr)(n—1)+(cst+cs+cr) '21 t
=

Best case: t; =1

T(A) = ein+(ca+eca+c5+cg)(n—1)
= (C1+62+C4+C5+Cg)n—(62+C4+C5+Cg)

Worst case: t; = j

T(A) = (es+ce+cr)Simyj+---
= (es+ et e)(HH 1)+

e Quadratic is OK if n is 5, 10, 100.
e But what if n = 1,000, 0007
Average case:

e When we insert A[j], roughly half the elements
in A[l..j — 1] will be greater that A[j], and half
will be less.

e Average case is still quadratic

Designing Algorithms

Insertion sort uses an incremental approach:
e We insert a single element into A[1..5].
We can do better using “divide-and-conquer”

e Divide each problem into smaller subproblems
(typically about half the size of the original)

e Conquer each subproblem

o Combine the solutions

Analysis of Merge-Sort

MERGE-SORT(A, p, 1)

1 ifp<r

2 thenq«— |[(p+7)/2]

3 MERGE-SORT(A4, p, q)

4 MERGE-SORT(A, q + 1,7)
5 MERGE(A, p, q,T)

Ifm=7r—p+1, define
e T'(m) = the worst-case time for MERGE-SORT (A, p,7)

e U(m) = be the worst-case time for MERGE(A, p, q,T)

c1 fm=1
2T ([m/2])+ U(m) if m > 1
Not hard to show that U(m) = ©(m)

It follows that T'(n) = O(nlgn) (g = log,)

e This is much better than ©(n?) for large n!

T(m) =

11

Merge Sort

Merge sort is a sorting algorithm that uses divide
and conquer.

e Divide the sequence to be sorted into two subse-
quences of size n/2

e Conguer: sort the two subsequence (recursively)

e Combine: merge the resulting sequences

Suppose A is an array of lengthn, 1 <p <r <n:
MERGE-SORT (A, p,r)

1ifp<r

then g — [(p+7)/2]
MERGE-SORT(A4, p, q)
MERGE-SORT(A, g+ 1,7)
MERGE(A, p, q,7)

[\

U W

10

What We’ll Cover

e Data structures (Chapters 7, 11 14, 22)
o Stacks, queues, linked lists
o Hashing
o Binary search trees, red-black trees (maybe)
o Heaps
e Algorithm design techniques (Chapters 16-18)
o dynamic programming
o greedy algorithms
o amortized analysis
e Graph algorithms (Chapters 23 25, 27)
o Strongly connected components
o Minimum spanning tree
o Shortest paths (Dijkstra’s algorithm)

o Maximum flow

12

e NP-completeness (Chapter 36) Asymptotic Notation
o If there’s time:

o String Matching (Chapter 34) We measure the efficiency of an algorithm as a func-

o The RSA cryptosystem (Chapter 33.7) tion of the input size.
This week: e Want to describe the efficiency succinctly
e Technical background Some useful notation:
o Asymptotic growth (big 0,0,9) (Chapter 2.1) e T(n) = O(g(n))/g(n))/O(g(n)) if there is a
o Recurrences (Chapter 4.1, 4.3) constant ¢ such that cg(n) is asymptotically an
o A little probability upper/lower/tight bound for T'(n)

0 T(n) = ©(g(n)) iff
T(n) = O(g(n)) and T(n) = Q(g(n)).

We won’t cover o(g(n)), w(g(n)).

Formally, ©(g(n)), O(g(n)), and Q(g(n)) are sets of
functions:

® O(g(n)) = {f(n) : de1,c2 > 0,mp
(c1g(n) < f(n) < eag(n) for n > ny)}

* O(g(n)) = {f(n) : ez > 0,n0(f(n) < c29(n) for n > ng)}
* Q(g(n)) = {f(n) : Je1 > 0,n0(c19(n) < f(n) for n > no)}

13 14

Example: 2n? + 3n + 1 = O(n?) = 2n% + O(n). The O, ©, Q notation ignores constants.
o Clearly 2n2 < 2n’2+3n+1<3n’forn >4 e The constants depend on the machine, details of
oSincen?>3n+1ifn >4 implementation
o Also 202 4 3n < 202 + 3n 4+ 1 < 2n% + 4n e Improving the constants is good but ...

More generally, if a > 0, e Improving ©(...) is better

o It gives us a better indication of how the prob-
lem scales

00(lgn) < O(lg’n) < O(n) < O(nlgn) <

Example: 6n3 # O(n?); 6n® = Q(n?). o(n?) < O(27)

e Really should say 6n3 ¢ ©(n?); 6n® € Q(n?).

an® 4+ bn + ¢ = O(n?) = an® + O(n)

15 16

Recurrences

A recurrence is a relation that describes a function
in terms of its value on smaller inputs.

ifm=1

T(m) = Y7 (Fm/21) + exm i m > 1

Recurrences arise frequently when computing the run-

ning time of a recursive algorithm.

e Often stated without [, | |

How do we solve them?

e Guess and verify by induction (substitution method)

e Apply master theorem

We won'’t cover iteration method.

17

The Master Method

Theorem: Let a,b > 1 and suppose
T(n) = aT(n/b) + f(n).
e Can replace n/b by [n/b] or |n/b|.

1. If f(n) = O(n'°&(®)¢) for some ¢ > 0
then T'(n) = ©(n'°8 (@),

2. If f(n) = ©(n'°® () then T'(n) = O(nl°% (@ 1gn).

3. If f(n) = Q(n'°® (9*€) for some € > 0 and
af(n/b) < cf(n) for some ¢ > 1
then T'(n) = O(f(n)).

In all three cases we compare f(n) with nl°g (@),
e The larger function dominates

Roughly:
e if f(n) < n'°% (@ then T'(n) = ©(n'8 ()
e if f(n) ~ n'8 (@) then T'(n) = O(n'°% (@ Ign)
o if f(n) > nl°& @ then T(n) = O(f(n))

19

The Substitution Method

a fm=1
T(n) = { 27(n/2) +n if m > 1
Guess T'(n) < enlg(n) (for some c:)

Verify:

Y T(n) = 2T(n/2) +n
2¢(n/21gn/2) +n
enlg(n/2) +n
enlgn +n—cnlg?2
enlgn+ (1 —c)n
enlgn (ifc>1)

A

A

What about T'(1)7
eclgl =0
All we need is T'(n) < enlgn for n sufficiently large.
e E.g. T(2) =2¢; + 2. Choose c=¢; + 1.
o Then T'(2) < 2¢lg2 = 2¢; + 2

A formal proof that T'(n) < enlgn for n > 2 pro-
ceeds by induction.

¢ YOU ALL SHOULD KNOW HOW TO DO IN-
DUCTION PROOFS!

18

T(n) = aT(n/b) + f(n):

L. If f(n) = O(n'& (@)~ for some ¢ > 0
then T'(n) = ©(nlo% (@),

2. If f(n) = O(n'% @) then T'(n) = O(n% () 1gn).
3. If f(n) = Q(n'8(9+€) for some € > 0 and
af(n/b) < cf(n) for some ¢ > 1
then T'(n) = O(f(n)).
Comments:
e f(n) < nl°%(® means there is some polynomial
nf such that f(n) < cn'® (@ /n¢
e Third case has a regularity condition: af(n/b) <
cf(n)
e Not all cases covered by theorem—but it’s still
very useful

20

T(n) = aT(n/b) + f(n):

1. If f(n) = O(n'°%(@)=¢) for some € > 0
then T'(n) = O(n'8 (@),

2. If f(n) = ©(n'°® () then T'(n) = O(n'% (@ 1gn).

3. If f(n) = Q(n'°% @+ for some € > 0 and
af(n/b) < cf(n) for some ¢ > 1
then T'(n) = O(f(n)).

Examples:

eT(n)=9T(n/3)+n
0a=9,b=3, f(n)=n
o nloBs) = n? so f(n) = O(n'es(%)-¢)
o T(n) = O(n?)

eT(n)=T((2n/3)+1
oa=1,b=3/2, f(n)=1=nlss
oT(n) =0(gn)

e T(n)=3T(n/4) +nlgn
ca=3,b=4, f(n)=nlgn
0 1lo8s3 o 0T, F(n) = Qn0T93+)

©af(n/b) = 3(n/4)lg(n/4) < (3/4)nlgn = 3/4f(n)

oT(n) =0O(nlgn)

21

Random Variables and Expectation:
A Review

Suppose S is a sample space with a probability Pr

Remember: a random variable X on S is a function
from S to the real numbers.

e Pr(X =2)=Pr({seS:X(s)=x})

e Example: toss a pair of fair dice.

o Let S be the set of 36 outcomes: (1,1),(1,2),...

oLet X(a,b)=a+b
oPr(X =4)=Pr({(1,3),(2,2),(3,1)}) = 1/12
The expected value of X is
EX) = ;mPr(X =z).
e For X(a,b)=a+b

E(X) = 2(1/36) + 3(2/36) + 3(3/36) + - - -
+7(6/36) + - - - + 12(1/36)

When we talk about the average-case running time
of an algorithm, we mean the expectation.

23

T(n) = aT(n/b) + f(n):

1. If f(n) = O(n'°2(9=¢) for some € > 0
then 7'(n) = ©(n'°& (@),

2. If f(n) = ©(n'°2 (@) then T'(n) = O(n°% (@) 1gn).

3. If f(n) = Q(n'2(9+€) for some € > 0 and
af(n/b) < cf(n) for some ¢ > 1
then T'(n) = O(f(n)).

eT(n)=2T(n/2) +nlgn

ca=b=2, f(n)=nlgn
o n1082(2) = nl;

* nlgn # O(n'™)

x nlgn # O(n)

x nlgn # Q(ntte)

e Theorem does not apply!

22

Dynamic Sets

e A dynamic set is one whose membership changes
over time.

e Sometimes the elements of a dynamic set have an
associated key

o In that case, we write key[z] = k
e Sometimes keys come from a totally ordered set

o this means key[x] > key[z'], key[z] < key[z'] or
keyle] = heyfa’]

24

Dynamic Set Operations

We want to be able to manipulate dynamic sets.
Typical operations:

e SEARCH(S, k): returns x € S such that key[z] =
k if there is one; NIL otherwise

o typically x is a pointer to an element in S, not
the element itself

e INSERT(S, z)

e DELETE(S, z)

e MINIMUM(S): returns element with smallest key
e MAXIMUM(S): returns element with largest key
e SUCCESSOR(S, x)

e PREDECESSOR(S, x)

o MiNniMuM, MAXIMUM, PREDECESSOR, and SUC-
CESSOR make sense only if the keys are totally
ordered

We do not necessarily want or need to implement all
these operations.

e Different data types implement different subsets
e A dictionary allows insert, delete, and search
e A priority queue allows insert, delete, maximum

e There are typically tradeoffs between implemen-
tations

26

