The Clique Problem

A clique in a graph is a completely connected subgraph

• a set of nodes such that every pair is connected by an edge

The CLIQUE problem: Does a given graph have a clique of size k?

• CLIQUE = $\{(G, k) : G \text{ has a clique of size } k\}$.

Theorem: CLIQUE is NP-complete.

Proof: Clearly, CLIQUE is in NP: just guess the nodes in the clique and verify that they're all connected to each other.

To show CLIQUE is NP-hard, reduce 3-CNF to CLIQUE:

• Given a 3-CNF formula φ with k clauses, find a graph G such that G has a clique of size k (i.e. $(G,k) \in \text{CLIQUE}$) iff φ is satisfiable.

Vertex Cover

A vertex cover of a graph G = (V, E) is a set V' of vertices that covers the edges:

- Each edge in E is incident to at least one vertex in V'
- If $(i, j) \in E$, then $i \in V'$ or $j \in V'$

We are typically interested in finding a *minimum* vertex cover:

- Mimimum number of agents needed to watch all the roads.
- Used in computational biochemistry to exclude conflicts in samples:
 - vertices in graph are observations
 - put an edge between two vertices when they conflict
 - a minimum vertex cover is a minimum set of conflicting observations.

The decision problem version:

VERTEX-COVER = $\{(G, k) : G \text{ has a vertex cover with } k \text{ vertices}\}$

3

Idea of proof:

Suppose $\varphi = C_1 \wedge \ldots \wedge C_k$;

• $C_i = l_{1k} \vee l_{2k} \vee l_{3k}$, where l_{ij} is a literal

Construct a graph $G_{\varphi} = (V_{\varphi}, E_{\varphi})$ as follows:

- put a vertex v_{ij} in V_{φ} for each literal l_{ij} , i = 1, 2, 3, $j = 1, \ldots, k$
 - \circ That means that V_{φ} has 3k vertices
- Put an edge between v_{ij} and $v_{i'j'}$ if
 - $\circ j \neq j'$ (so that l_{ij} and $l_{i'j'}$ are indifferent clauses) $\circ l_{ij}$ is not equivalent to $\neg l_{i'j'}$

Claim: φ is satisfiable iff G_{φ} has a k-clique

- If φ is satisfiable, there is a truth assignment such that for each j, (at least) one of l_{1j} , l_{2j} , and l_{3j} is true.
 - \circ Pick one: the set of literals you picked forms a k-clique
- \bullet if there is a k-clique, define a truth assignment that makes each literal in the k-clique true
 - \circ This gives an assignment that satisfies φ

2

Theorem: The vertex-cover problem is NP-complete.

Clearly vertex cover is in NP:

• Given (G, k), guess a set V' with |V'| = k and verify that it covers the edges in G.

To show vertex-cover is NP-hard, we reduce the clique problem to it.

Given a graph G = (V, E), want to know if it has a clique of size k:

- Let $\overline{G} = (V, \overline{E})$
- $\bullet \ \overline{E} = \{(u, v) : (u, v) \notin E\}$

Claim: G has a clique of size k iff \overline{G} has a vertex cover of size |V| - k.

- V' is a clique in G iff V V' is a vertex cover for \overline{G} .
 - o If V-V' is a vertex cover of \overline{E} and $u,v\in V'$ then $(u,v)\in E$
 - * if $(u, v) \in \overline{E}$, then $u \in V V'$ or $v \in V V'$
 - * That means V' is a clique
 - ∘ If V' is a clique and $(u, v) \in \overline{E}$, then $u \in V V'$ or $v \in V V'$, so V V' is a cover of \overline{E} .

Approximation Algorithms

VERTEX-COVER is NP-complete.

• Can't expect to find a PTIME algorithm to find the smallest vertex cover.

There is a PTIME algorithm that finds an "approximate" vertex cover.

• At most $2 \times$ size of smallest vertex cover.

Idea: use a greedy algorithm.

- Initially $E' = E, V' = \emptyset$
- Pick an uncovered edge $(u, v) \in E'$ at random
 - \circ add u, v to V'
 - \circ remove from E' all edges covered by $u,\,v$
- Continue until E' is empty

This works:

- V' must be a vertex cover at the end.
- If V'' is any vertex cover, for every pair u, v included in V', at least one of u, v must be in V''

5

Hamiltonian Cycle

 $HAM-CYCLE = \{G : G \text{ has a Hamiltonian cycle}\}\$

Theorem: HAM-CYCLE is NP-complete.

Proof: Clearly it is in NP.

To show that it is NP-hard, we reduce 3-CNF to it.

- This is tricky ...
- \bullet See text.

- \circ Otherwise it wouldn't cover (u, v).
- Therefore, $|V''| \leq 2|V'|$.

Can we do better?

- Is there a PTIME algorithm for vertex cover with an approximation factor of better than 2?
- It's NP-complete to approximate it better than 1.1666.

6

Hamilton Cycle vs. Hamilton Path

Both the Hamiltonian path problem and the Hamiltonian cycle problem are NP-complete. It's easy to reduce one to the other:

Reducing Hamilton cycle to Hamiltonian Path:

- Given a graph G = (V, E); choose a vertex $v_0 \in V$
- Define G' = (V', E') as follows:
 - $\circ \ V' = V \ \cup \ \text{two special new vertices:} \ x \ \text{and} \ x'$
 - $\circ E' = E \cup \text{an edge } (x, v_0) \text{ from } x \text{ to } v_0 \text{ and edges } (v', x') \text{ for all } v' \text{ such that } (v', v_0) \in E.$

G has a Hamiltonian cycle iff G' has a Hamiltonian path:

- If G has a cycle, without loss of generality, it is of the form v_0, \ldots, v_n , where $v_n = v_0$.
 - $\circ x, v_0, \ldots, v_{n_1}, x'$ is a Hamiltonian path in G'.
- If G' has a Hamiltonian path, it must start with x and end with x', say $x, v_0, \ldots, v_{n-1}, x'$.
 - $\circ v_0, \ldots, v_{n-1}, v_0$ is a Hamiltonian cycle in G.

Reducing Hamiltonian path to Hamiltonian cycle:

- Given G = (V, E), define G' = (V', E') as follows: • $V' = V \cup$ one special vertex x. • $E' = E \cup (x, v)$ and (v, x) for all $v \in V$
- If v_0, \ldots, v_n is a Hamiltonian path in G iff (x, v_0, \ldots, v_n, x) is a Hamiltonian cycle in G'.

9

Subset Sum

Given a set of S of natural numbers and a target sum $t \in N$, is there a subset S' whose elements sum to t?

- $\bullet \ S = \{1,4,16,64,256,1040,1041,1093,1284,1344\}, \\ t = 3754.$
- Answer: Yes take $S' = \{1, 16, 64, 256, 1040, 1093, 1284\}$

This is the problem of making change, given a collection of coins.

Theorem: Subset-sum is NP-complete

Proof: Clearly in NP.

For NP-hardness, reduce Hamilton cycle to subset sum.

- Suppose that there are 5 vertices, 1,..., 5
- Represent an edge (2,4) as the number 1011100010.
 - \circ The first 5 digits 10111 have a 1 everywhere but at 2
 - o The last 5 digits 00010 have a 1 only at the 4.

Traveling Salesman Problem

This is a weighted version of HAM-CYCLE.

- Each edge has a weight.
- Is there a Hamiltonian cycle with weight $\leq k$?
- Think of a salesman going from city to city where the weight is the travel time.
- \bullet In text, it is assumed that the graph is complete.
 - Can go anywhere, at a cost.

TSP = $\{(G, k) : \text{there is a Hamiltonian cycle in } G \text{ of weight } \leq k\}$

Theorem: TSP is NP-complete.

Proof: Clearly in NP. To show it is NP-hard, reduce Hamiltonian path to it.

- Given a graph G with n vertices, give each edge weight 1.
- There is a Hamiltonian cycle in G iff we can solve TSP for (G, n).

There are PTIME algorithms for approximating TSP to within $1 + \epsilon$, for any fixed ϵ !

• The polynomial has degree roughly $1/\epsilon$.

10

- The fact that (2,4) comes before (4,3) in a path will be encoded by the the 11101 that starts (4,3) matching up with the 00010 in (2,4).
- A careful proof is written up and available on the course web site.

0-1 Knapsack

Theorem: The 0-1 Knapsack problem is NP-complete.

Clearly 0-1 knapsack is in NP:

• Guess a set of items, see if their total weight is $\leq W$ and total value is $\geq V$.

To show that 0-1 Knapsack is NP-hard, reduce subset sum to it.

Given set S and target t:

- If $j \in S$, have item v_j with weight and value j
- Let W = V = t.
 - You can get a set of items of weight at most
 W with value at least V iff there is a subset of
 S that sums to t.

13

• Office hours continue as usual, except Bo Pan will be covering mine for on Tuesday, May 15, and Bo's Wednesday office hours will be 1-2, not 10-11, and in her office.

Coverage of Final

Final is on Thursday, May 17, 3-5:30, Hollister 362. It includes:

- Everything that was on the prelim.
- Shortest paths
 - o Dijkstra, Bellman-Ford
- Minimum spanning trees
 - o Kruskal, Prim
- Flow networks.
- Dynamic programming
- Greedy algorithms
- NP-completeness
 - \circ PTIME
 - \circ Reductions
 - \circ Languages (L^*)

Review session on Wednesday, May 16, 4–6 PM, in Upson 207.