NP and Nondeterminism

More traditional way of viewing NP:

e Imagine a nondeterministic algorithm, where next
step is not determined.

o E.g. choose a random number n and set z = n

e [ is in NP if there is a nondeterministic algo-
rithm A that runs in polynomial time such that

oif x € L, some computation accepts (returns
1)

oif z ¢ L, no computation accepts

e “runs in polynomial time” means exists ¢ such
that all computations on input z run in time
O(|=[%).

o Because of the nondeterminism, different com-
putations on input x may have different run-
ning times.

NP, Co-NP, and PTIME

L is in co-NP if L is in NP:
Examples:

e [ is the set of encodings of graphs that do not
have Hamiltonian paths.

Major questions of complexity theory:
e Does P = NP?
o Probably not, but no proof yet

o If P = NP, then there are PTIME algorithms for
lots of problems that we don’t know how to do
efficiently yet

o E.g., factoring, scheduling, bin-packing, ...
e Does P = co-NP?

o Since P is closed under complementation, this
is true iff P = NP (see homework)

e Does NP = co-NP?
e Does P = NP N co-NP?

o We can’t answer any of these questions (yet)
o Solving them gets you a Turing award . ..
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Connection to previous definition:

e if there’s a verification algorithm, can convert it
to a nondeterministic polynomial algorithm:

o nondeterministically try all possible verifica-
tion strings y such that |y| = O(|z|%)
o Can do this in PTIME with branching

e Conversely, if there’s a nondeterministic algorithm,
can convert it to a verification algorithm:

oy describes the choices made along a given
branch

The little we know:
e P C NP/co-NP C PSPACE C EXPTIME
e P £ PSPACE



Reducibility

Key idea in complexity theory: reducibility

e Making precise the well-known mathematical idea
of reducing one problem to another

e Idea: If you can reduce L, to Lo, then if you have
an efficient algorithm to decide Lo, then you get
an efficient algorithm to decide L,

Formal definition:

Ly C ¥* is polynomial-time reducible to Ly C (X')*
if there is a polynomial time computable function
f:X* = () such that z € Ly iff f(z) € Lo.

Lemma 1: If Ly, € P and Ly <p Ly, then L; € P.

Proof: Suppose A, is a PTIME algorithm that de-
cides Ls, and f reduces L; to Lo

exc Liff f(z)€ Ly
Let Ai(z) = As(f(z)).
e A, is PTIME, since A, and f are.
ez c Ly iff f(z) € Ly iff Ai(z) = As(f(x)) = 1.

NP-Completeness

A language L is NP-complete if
1. Lis in NP and

2. L is NP hard — i.e., L is the “hardest” NP prob-
lem:

e every language L’ in NP can be reduced to L

oIf /€ NP, then I' <p L

Theorem: If any NP-complete language is in P,
then every language in NP is in P.

Proof: Suppose that L is NP-complete, and L is in
P. If L' € NP, then L' <p L. Therefore L' is in P.

There are thousands of known NP-complete languages.

e See Garey and Johnson (1979) for the classic com-
pendium

We haven’t found any PTIME algorithm for any of
them yet.

Lemma 2: Reduction is transitive: If L; <p L9 and
Ly <p L3, then I, <p Ls.

Proof: Suppose f reduces L; to Lo, g reduces Lo to
Lg:

ex € Ly iff f(x) € Ly

oz € Ly iff g(x) € Ls.
Then z € L iff g(f(z)) € Ls.
go f is PTIME computable.
Therefore L; <p L3 (using g o f)

Proving a Language is NP-complete

General strategy for proving language L is NP-complete:
e Show L is in NP (usually easy)
e Reduce a known NP-complete problem L' to L.

o That is, show that L' <p L
o This means L is NP-hard
x This is because <p is transitive
x*If " isin NP, L" <p L'
x Since L' <p L, it follows that L” <p L.

Thus, it helps to have a core set of NP-complete
problems to start with.

Getting off the ground is hard:

e How do you prove that every language in NP can
be reduced to a particular language L?

For this we need a model of computation.



Turing Machines

A Turing machine (TM) can be thought of as an infi-
nite tape, where a head can write Os and 1s, together
with some instructions for what to write.

e initially the tape has the input written on it.
Key question:
e How are instructions described?
o i.e., what is the programming language?
o Idea: there is a finite set of states
e In a given state, the head can

o read the symbol on the tape cell under it,
o write a symbol (0/1) on the tape cell under it,
o move one step left or one step right,

e Then the TM can change to a new state.

o The new state depends on the old state and
the symbol read.

o There may be more than one possible next
state (nondeterminism).

Satisfiability: the canonical
NP-complete problem

Propositional logic:
e Start with a set of primitive propositions {py, ..., pn}-

e Form more complicated formulas by closing off
under conjunction (A) and negation (—)

Typical formula: —=(p; A =ps) A (p2 A =p1).-

Standard abbreviation: p V ¢ is an abbreviation for
=(=p A —g).

Given a formula, we want to decide if it is true or
false.

e The truth or falsity of a formula depends on the
truth or falsity of the primitive propositions that
appear in it. We use truth tables to describe how
the basic connectives (—, A) work.
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This may not like a very powerful model of compu-
tation, but ...

e Every program in a standard programming lan-
guage (Java, C) corresponds to some TM

To show that a language L is NP-hard, we have to
show that for every language L' in NP, there is a
function frs such that x € L' iff fr(z) € L.

e Idea: since L' € NP, there is a TM My, that
outputs 1 on input z iff z € L

e fr(z) simulates the computation of M on
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Truth Tables

For —

p P

T F

F T

For A

P q pAq

TT T

T F F

FT F

FF F

For V:

P g p oq “pA-qg ~(-pA-g)=pVgq
TT F F F T
TF F T F T
FTT F F T
FF T T T F

This means that V is inclusive or, not exclusive or.

12



Equivalence

Two formulas are equivalent if the same truth as-
signments make them true.

Examples:
e Distribution Laws:
opA(q1V q2) is equivalent to (p A q1) V (p A ¢2)
opV (g1 A qo) is equivalent to (pV q1) A (pV q2)
e DeMorgan’s Laws
o =(p A q) is equivalent to —p V —¢
o =(pV q) is equivalent to —p A —¢
How do you check if two formulas are equivalent?

e Fill in the truth tables for both.
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Idea of proof:
e Start with a language L' in NP and input z

e Since L' is in NP, there exists ¢, k, and a (non-
deterministic) TM My, such that M, accepts L/
using at most c|z|* steps on input x

e Construct formula ¢, 1y that is satisfiable iff z €
L/

e Want |¢, /| to be O(|z|?*)
e Then fr(z) = ¢, 1

Main ideas of construction
e My, uses at most c|z|* cells on the tape
e Have propositions py ¢, P1.it, Poits it = 1,...clz|F
o cell 7 has a 0/1/b (b for blank) at step ¢

e Part of ¢, ;s says that exactly one of pg;¢, P,
Dy, holds at each time ¢

(P04t V D1t V Dhig)N
(ot AP1ig) N —(Posg A Poig) N (Pt A Poyit)

e Have propositions py 4, i,t = 1,...,c|z|

o The head is in position ¢ at time ¢

Satisfiability

Is (p1 V pa) A (mp2 V p3) A (—ps V p1) satisfiable?

e s there a truth assignment to the primitive propo-
sitions that makes this formula true?

oYes: py T, pp—T,p3 T
e How about (p1 V p2) A (—=p2 V p3) A (=p3 V —p1)?

opy < T, py«— T, ps — T doesn’t work.
opy T, py  F, ps — F does.

e How about (p1Vp2) A(=p2Vps) A(=psV —p1) A=p1?
o Nothing works ...

In general, you can tell if a formula is satisfiable by
guess a truth assignment, and verifying that it works.

e The truth assignment is a certificate ...

Satisfiability is also NP-hard ....
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e Exactly one of pp14,. .., Pp ks holds (for all ¢)
o ph,l,l hOldS
o The tape is initially at the far left

o If x = zy...xg, then pry 11 APy A v APyia A
Dok+1,1 N Py efaf 1 holds

o x is written out initially at the far left of the
tape, followed by blanks.

e Similarly, can say that at time c|z|*, there is a 1
at the far left, followed by blanks

o My, accepts ©

e The hard part is to write the part of the formula
that captures the step-by-step operation of M.

o Need proposition that talk about the current
state of M and how it changes

Bottom line: We can simulate TMs that run in non-
deterministic polynomial time using propositional logic.

e Satisfiability is NP complete!

e This was the first problem proved NP complete
(by Steve Cook)

e Validity is co-NP complete
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3-CNF Satisfiability

A literal is a primitive proposition or its negation:
epor —p

A clause is a disjunction of distinct literals:
ep1Vp3V prVpaV ps

A formula is in CNF (conjunctive normal form) if it

is a conjunction of clauses

(p1V —p3) A (p1VpsV —paVpr) A(psV —ps)

A formula is in k-CNF if each clause has exactly k
literals.

Theorem: The satisfiability problem for 2-CNF for-
mulas is in P.

Theorem: The satisfiability problem for 3-CNF for-
mulas in NP-complete.

Proof: It’s clearly in NP. To show that it’s NP-
hard, it suffices to show that the satisfiability of an
arbitrary formula ¢ can be reduced in polynomial to
the satisfiability of a 3-CNF formula ¢'.
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Step 2: Convert ¢’ to an equivalent CNF formula,
using various equivalences, where each clause has
at most 3 literals:

e Using Distribution Laws, (g A =¢') V (mg A ¢') is
equivalent to

(qV-g)A(qV )N (=¢V=g) A (=g V{)

e Using Distribution Laws and DeMorgan’s Laws,
can do the same for other clauses.

e (Actually, every formxla is equivalent to a CNF
formula)

Step 3: Get an equi-satisfiable 3-CNF formula
e Replace a disjunct p; V py by
(p1Vp2V @) A(p1VpzV—g)

e The new formula is satisfiable iff the original was.
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Three steps:
Step 1:
e Write a binary parse tree for ¢,

o internal nodes are labeled with =, A, and Vv

o leaves are labeled with literals

o An internal node represents a subformula of ¢

o Introduce a new primitive proposition ¢ for
each internal node

o Write formula that says that ¢ characterizes
the formula at that node.

* If internal node is — and successor is labeled
by ¢/,
(gn=d) V(=g N )
x If internal node is A and successors are ¢;
and go:
(@NaAg) V(=g A=(q1 A g))
e Let ¢’ be the conjunction of these formulas.

o Not hard to show that ¢’ is satisfiable iff ¢ is
satisfiable
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