NP and Nondeterminism

More traditional way of viewing NP:

e Imagine a nondeterministic algorithm, where next
step is not determined.

o E.g. choose a random number n and set z = n

e [is in NP if there is a nondeterministic algo-
rithm A that runs in polynomial time such that

oif x € L, some computation accepts (returns
1)

oif z ¢ L, no computation accepts

e “runs in polynomial time” means exists ¢ such
that all computations on input z run in time
O(|=[%).

o Because of the nondeterminism, different com-
putations on input x may have different run-
ning times.

NP, Co-NP, and PTIME

L is in co-NP if L is in NP:
Examples:

e [is the set of encodings of graphs that do not
have Hamiltonian paths.

Major questions of complexity theory:
e Does P = NP?
o Probably not, but no proof yet

o If P = NP, then there are PTIME algorithms for
lots of problems that we don’t know how to do
efficiently yet

o E.g., factoring, scheduling, bin-packing, ...
e Does P = co-NP?

o Since P is closed under complementation, this
is true iff P = NP (see homework)

e Does NP = co-NP?
e Does P = NP N co-NP?

o We can’t answer any of these questions (yet)
o Solving them gets you a Turing award . ..

3

Connection to previous definition:

e if there’s a verification algorithm, can convert it
to a nondeterministic polynomial algorithm:

o nondeterministically try all possible verifica-
tion strings y such that |y| = O(|z|%)
o Can do this in PTIME with branching

e Conversely, if there’s a nondeterministic algorithm,
can convert it to a verification algorithm:

oy describes the choices made along a given
branch

The little we know:
e P C NP/co-NP C PSPACE C EXPTIME
e P £ PSPACE

Reducibility

Key idea in complexity theory: reducibility

e Making precise the well-known mathematical idea
of reducing one problem to another

e Idea: If you can reduce L, to Lo, then if you have
an efficient algorithm to decide Lo, then you get
an efficient algorithm to decide L,

Formal definition:

Ly C ¥* is polynomial-time reducible to Ly C (X')*
if there is a polynomial time computable function
f:X* = () such that z € Ly iff f(z) € Lo.

Lemma 1: If Ly, € P and Ly <p Ly, then L; € P.

Proof: Suppose A, is a PTIME algorithm that de-
cides Ls, and f reduces L; to Lo

exc Liff f(z)€ Ly
Let Ai(z) = As(f(z)).
e A, is PTIME, since A, and f are.
ez c Ly iff f(z) € Ly iff Ai(z) = As(f(x)) = 1.

NP-Completeness

A language L is NP-complete if
1. Lis in NP and

2. L is NP hard — i.e., L is the “hardest” NP prob-
lem:

e every language L’ in NP can be reduced to L

oIf /€ NP, then I' <p L

Theorem: If any NP-complete language is in P,
then every language in NP is in P.

Proof: Suppose that L is NP-complete, and L is in
P. If L' € NP, then L' <p L. Therefore L' is in P.

There are thousands of known NP-complete languages.

e See Garey and Johnson (1979) for the classic com-
pendium

We haven’t found any PTIME algorithm for any of
them yet.

Lemma 2: Reduction is transitive: If L; <p L9 and
Ly <p L3, then I, <p Ls.

Proof: Suppose f reduces L; to Lo, g reduces Lo to
Lg:

ex € Ly iff f(x) € Ly

oz € Ly iff g(x) € Ls.
Then z € L iff g(f(z)) € Ls.
go f is PTIME computable.
Therefore L; <p L3 (using g o f)

Proving a Language is NP-complete

General strategy for proving language L is NP-complete:
e Show L is in NP (usually easy)
e Reduce a known NP-complete problem L' to L.

o That is, show that L' <p L
o This means L is NP-hard
x This is because <p is transitive
x*If " isin NP, L" <p L'
x Since L' <p L, it follows that L” <p L.

Thus, it helps to have a core set of NP-complete
problems to start with.

Getting off the ground is hard:

e How do you prove that every language in NP can
be reduced to a particular language L?

For this we need a model of computation.

Turing Machines

A Turing machine (TM) can be thought of as an infi-
nite tape, where a head can write Os and 1s, together
with some instructions for what to write.

e initially the tape has the input written on it.
Key question:
e How are instructions described?
o i.e., what is the programming language?
o Idea: there is a finite set of states
e In a given state, the head can

o read the symbol on the tape cell under it,
o write a symbol (0/1) on the tape cell under it,
o move one step left or one step right,

e Then the TM can change to a new state.

o The new state depends on the old state and
the symbol read.

o There may be more than one possible next
state (nondeterminism).

Satisfiability: the canonical
NP-complete problem

Propositional logic:
e Start with a set of primitive propositions {py, ..., pn}-

e Form more complicated formulas by closing off
under conjunction (A) and negation (—)

Typical formula: —=(p; A =ps) A (p2 A =p1).-

Standard abbreviation: p V ¢ is an abbreviation for
=(=p A —g).

Given a formula, we want to decide if it is true or
false.

e The truth or falsity of a formula depends on the
truth or falsity of the primitive propositions that
appear in it. We use truth tables to describe how
the basic connectives (—, A) work.

11

This may not like a very powerful model of compu-
tation, but ...

e Every program in a standard programming lan-
guage (Java, C) corresponds to some TM

To show that a language L is NP-hard, we have to
show that for every language L' in NP, there is a
function frs such that x € L' iff fr(z) € L.

e Idea: since L' € NP, there is a TM My, that
outputs 1 on input z iff z € L

e fr(z) simulates the computation of M on

10

Truth Tables

For —

p P

T F

F T

For A

P q pAq

TT T

T F F

FT F

FF F

For V:

P g p oq “pA-qg ~(-pA-g)=pVgq
TT F F F T
TF F T F T
FTT F F T
FF T T T F

This means that V is inclusive or, not exclusive or.

12

Equivalence

Two formulas are equivalent if the same truth as-
signments make them true.

Examples:
e Distribution Laws:
opA(q1V q2) is equivalent to (p A q1) V (p A ¢2)
opV (g1 A qo) is equivalent to (pV q1) A (pV q2)
e DeMorgan’s Laws
o =(p A q) is equivalent to —p V —¢
o =(pV q) is equivalent to —p A —¢
How do you check if two formulas are equivalent?

e Fill in the truth tables for both.

13

Idea of proof:
e Start with a language L' in NP and input z

e Since L' is in NP, there exists ¢, k, and a (non-
deterministic) TM My, such that M, accepts L/
using at most c|z|* steps on input x

e Construct formula ¢, 1y that is satisfiable iff z €
L/

e Want |¢, /| to be O(|z|?*)
e Then fr(z) = ¢, 1

Main ideas of construction
e My, uses at most c|z|* cells on the tape
e Have propositions py ¢, P1.it, Poits it = 1,...clz|F
o cell 7 has a 0/1/b (b for blank) at step ¢

e Part of ¢, ;s says that exactly one of pg;¢, P,
Dy, holds at each time ¢

(P04t V D1t V Dhig)N
(ot AP1ig) N —(Posg A Poig) N (Pt A Poyit)

e Have propositions py 4, i,t = 1,...,c|z|

o The head is in position ¢ at time ¢

Satisfiability

Is (p1 V pa) A (mp2 V p3) A (—ps V p1) satisfiable?

e s there a truth assignment to the primitive propo-
sitions that makes this formula true?

oYes: py T, pp—T,p3 T
e How about (p1 V p2) A (—=p2 V p3) A (=p3 V —p1)?

opy < T, py«— T, ps — T doesn’t work.
opy T, py F, ps — F does.

e How about (p1Vp2) A(=p2Vps) A(=psV —p1) A=p1?
o Nothing works ...

In general, you can tell if a formula is satisfiable by
guess a truth assignment, and verifying that it works.

e The truth assignment is a certificate ...

Satisfiability is also NP-hard

14

e Exactly one of pp14,. .., Pp ks holds (for all ¢)
o ph,l,l hOldS
o The tape is initially at the far left

o If x = zy...xg, then pry 11 APy A v APyia A
Dok+1,1 N Py efaf 1 holds

o x is written out initially at the far left of the
tape, followed by blanks.

e Similarly, can say that at time c|z|*, there is a 1
at the far left, followed by blanks

o My, accepts ©

e The hard part is to write the part of the formula
that captures the step-by-step operation of M.

o Need proposition that talk about the current
state of M and how it changes

Bottom line: We can simulate TMs that run in non-
deterministic polynomial time using propositional logic.

e Satisfiability is NP complete!

e This was the first problem proved NP complete
(by Steve Cook)

e Validity is co-NP complete

16

3-CNF Satisfiability

A literal is a primitive proposition or its negation:
epor —p

A clause is a disjunction of distinct literals:
ep1Vp3V prVpaV ps

A formula is in CNF (conjunctive normal form) if it

is a conjunction of clauses

(p1V —p3) A (p1VpsV —paVpr) A(psV —ps)

A formula is in k-CNF if each clause has exactly k
literals.

Theorem: The satisfiability problem for 2-CNF for-
mulas is in P.

Theorem: The satisfiability problem for 3-CNF for-
mulas in NP-complete.

Proof: It’s clearly in NP. To show that it’s NP-
hard, it suffices to show that the satisfiability of an
arbitrary formula ¢ can be reduced in polynomial to
the satisfiability of a 3-CNF formula ¢'.

17

Step 2: Convert ¢’ to an equivalent CNF formula,
using various equivalences, where each clause has
at most 3 literals:

e Using Distribution Laws, (g A =¢') V (mg A ¢') is
equivalent to

(qV-g)A(qV)N (=¢V=g) A (=g V{)

e Using Distribution Laws and DeMorgan’s Laws,
can do the same for other clauses.

e (Actually, every formxla is equivalent to a CNF
formula)

Step 3: Get an equi-satisfiable 3-CNF formula
e Replace a disjunct p; V py by
(p1Vp2V @) A(p1VpzV—g)

e The new formula is satisfiable iff the original was.

19

Three steps:
Step 1:
e Write a binary parse tree for ¢,

o internal nodes are labeled with =, A, and Vv

o leaves are labeled with literals

o An internal node represents a subformula of ¢

o Introduce a new primitive proposition ¢ for
each internal node

o Write formula that says that ¢ characterizes
the formula at that node.

* If internal node is — and successor is labeled
by ¢/,
(gn=d) V(=g N)
x If internal node is A and successors are ¢;
and go:
(@NaAg) V(=g A=(q1 A g))
e Let ¢’ be the conjunction of these formulas.

o Not hard to show that ¢’ is satisfiable iff ¢ is
satisfiable

18

