NP and Nondeterminism

More traditional way of viewing NP:

e Imagine a nondetermainistic algorithm, where next
step 1s not determined.

o E.g. choose a random number n and set t = n

e [is in NP if there is a nondeterministic algo-
rithm A that runs in polynomial time such that

oif x € L, some computation accepts (returns
1)

oif x ¢ L, no computation accepts

e “runs in polynomial time” means exists ¢ such
that all computations on input x run in time

O(lz[)-

o Because of the nondeterminism, different com-
putations on input x may have different run-
ning times.

Connection to previous definition:

e if there’s a verification algorithm, can convert it
to a nondeterministic polynomial algorithm:

o nondeterministically try all possible verifica-
tion strings y such that |y| = O(|x|%)
o Can do this in PTIME with branching

e Conversely, if there’s a nondeterministic algorithm,
can convert it to a verification algorithm:

o y describes the choices made along a given
branch

NP, Co-NP, and PTIME

L is in co-NP if L is in NP:
Examples:

e L is the set of encodings of graphs that do not
have Hamiltonian paths.

Major questions of complexity theory:
e Does P = NP?
o Probably not, but no proof yet

o If P = NP, then there are PTIME algorithms for
lots of problems that we don’t know how to do
efficiently yet

o E.g., factoring, scheduling, bin-packing, ...
e Does P = co-NP?

o Since P is closed under complementation, this
is true iff P = NP (see homework)

e Does NP = co-NP?
e Does P = NP N co-NP?

o We can’t answer any of these questions (yet)
o Solving them gets you a Turing award ...

3

The little we know:
e P C NP/co-NP C PSPACE C EXPTIME
e P # PSPACE

Reducibility

Key idea in complexity theory: reducibility

e Making precise the well-known mathematical idea
of reducing one problem to another

e Idea: If you can reduce L; to Lo, then if you have
an efficient algorithm to decide Ls, then you get
an efficient algorithm to decide L,

Formal definition:

L; C ¥* is polynomial-time reducible to Ly C (X)*
if there is a polynomial time computable function

f 3" — (¥')" such that x € L iff f(z) € Lo.
Lemma 1: If L, € P and L1 <p Lo, then L € P.

Proof: Suppose A; is a PTIME algorithm that de-
cides Lo, and f reduces L; to Lo

o x € Lyiff f(x) € Ly
Let Ai(z) = As(f(x)).
o A, is PTIME, since Ay and f are.
o x c Lyiff f(x) € Ly iff A1(z) = As(f(x)) = 1.

Lemma 2: Reduction is transitive: If L; <p L, and
Ly <p L3, then L; <p Ls.

Proof: Suppose f reduces L, to Ly, g reduces L4 to
L32

o x € Lyiff f(x) € Ly

ox € Lyiff g(x) € Ls.
Then z € Ly iff g(f(x)) € Ls.
go f is PTIME computable.
Therefore L; <p L3 (using g o f)

NP-Completeness

A language L is NP-complete if
1. L is in NP and
2. L is NP hard — i.e., L is the “hardest” NP prob-

lem:

e every language L' in NP can be reduced to L

oIf I/ € NP, then I/ <p L

Theorem: If any NP-complete language is in P,
then every language in NP is in P.

Proof: Suppose that L is NP-complete, and L is in
P. If L' € NP, then L' <p L. Therefore L' is in P.

There are thousands of known NP-complete languages.

e See Garey and Johnson (1979) for the classic com-
pendium

We haven’t found any PTIME algorithm for any of
them yet.

Proving a Language is NP-complete

General strategy for proving language L is NP-complete:
e Show L is in NP (usually easy)
e Reduce a known NP-complete problem L' to L.

o That is, show that L' <p L
o This means L 1s NP-hard

x This 1s because <p 1s transitive
x If L" is in NP, L <p L’
* Since L' <p L, it follows that L” <p L.

Thus, it helps to have a core set of NP-complete
problems to start with.

Getting off the ground is hard:

e How do you prove that every language in NP can
be reduced to a particular language L7

For this we need a model of computation.

Turing Machines

A Turing machine (TM) can be thought of as an infi-
nite tape, where a head can write Os and 1s, together
with some instructions for what to write.

e initially the tape has the input written on it.
Key question:
e How are instructions described?
o i.e., what is the programming language?
e Idea: there is a finite set of states
e In a given state, the head can

o read the symbol on the tape cell under it,
o write a symbol (0/1) on the tape cell under it,

o move one step left or one step right,
e Then the TM can change to a new state.

o The new state depends on the old state and
the symbol read.

o There may be more than one possible next
state (nondeterminism).

This may not like a very powerful model of compu-
tation, but ...

e Every program in a standard programming lan-
guage (Java, C) corresponds to some TM

To show that a language L is NP-hard, we have to
show that for every language L’ in NP, there is a
function f7; such that x € L' iff f/(x) € L.

o Idea: since L' € NP, there is a TM M;, that
outputs 1 on input x iff z € L

e fr/(x) simulates the computation of My on x

10

Satisfiability: the canonical
NP-complete problem

Propositional logic:
e Start with a set of primitive propositions {p1, ..., ps}-

e Form more complicated formulas by closing off
under conjunction (A) and negation (—)

Typical formula: —=(p; A =p3) A (p2 A —p1).
Standard abbreviation: p V q is an abbreviation for

Given a formula, we want to decide if it is true or
false.

e The truth or falsity of a formula depends on the
truth or falsity of the primitive propositions that
appear in it. We use truth tables to describe how
the basic connectives (-, A) work.

11

Truth Tables

For —:

p —p

T F

F T

For A:

P q pNgq

TT T

TF F

FT F

FF F

For V:

p g °p ~q¢ "pA—qg ~(-pA-g) =pVg
TTTF F F T
TFF T F T
FTT F F T
FF T T T F

This means that V is tnclusive or, not exclusive or.

12

Equivalence

Two formulas are equivalent if the same truth as-
signments make them true.

Examples:
e Distribution Laws:
op A (q1V q) is equivalent to (p A q1) V (p A ¢o)
opV (g1 A q) is equivalent to (pV ¢1) A (p V q2)
e DeMorgan’s Laws

o =(p A q) is equivalent to —p V —q
o =(pV q) is equivalent to —p A =g

How do you check if two formulas are equivalent?

e Fill in the truth tables for both.

13

Satisfiability

Is (p1 V p2) A (mp2 V p3) A (—ps V pp) satisfiable?

e Is there a truth assignment to the primitive propo-
sitions that makes this formula true?

o Yes: p1<_T7p2<_T7p3<_T
e How about (p; V p2) A (—p2 V p3) A (—p3 V —p1)?

opy <« 1, po T, pg < T doesn’t work.
opy T, py«— F, p3 « F does.

e How about (p1Vp2) A(—p2Vps3)A(—psV—p1) A—p1?
o Nothing works ...

In general, you can tell if a formula is satisfiable by
guess a truth assignment, and verifying that it works.

e The truth assignment is a certificate ...

Satisfiability is also NP-hard

14

Idea of proof:
e Start with a language L’ in NP and input =z

e Since L' is in NP, there exists ¢, k, and a (non-
deterministic) TM M, such that M, accepts L'
using at most c|z|* steps on input x

e Construct formula ¢, ;/ that is satisfiable iff x €
L/

e Want |p, /| to be O(|z|*)
e Then f[/(x) — P I/

Main ideas of construction
e M/ uses at most c|z|* cells on the tape
e Have propositions po; ¢, prit, Pris, 4t = 1,...c|z|*
o cell 4 has a 0/1/b (b for blank) at step ¢

e Part of ¢, 1/ says that exactly one of pg;, D14,
ppi+ holds at each time ¢

(Poit V PritV Poit)\
“(poit APrit) N (Dot ADPoit) N(Prit A Poit)

e Have propositions py ¢, i,t = 1,...,clz|"

o The head is in position ¢ at time ¢

15

e Exactly one of pp14,...,Pp oz, holds (for all ¢)
® Dnri1 holds
o The tape is initially at the far left

o If x = xy...71, then py 11 ADgy21 N oo ADg k1 A

o x is written out initially at the far left of the
tape, followed by blanks.

e Similarly, can say that at time c|z|*, there is a 1
at the far left, followed by blanks

o My, accepts x

e The hard part is to write the part of the formula
that captures the step-by-step operation of M.

o Need proposition that talk about the current
state of M, and how it changes

Bottom line: We can simulate TMs that run in non-
deterministic polynomial time using propositional logic.

e Satisfiability is NP complete!

e This was the first problem proved NP complete
(by Steve Cook)

e Validity is co-NP complete

16

3-CNF Satisfiability

A literal is a primitive proposition or its negation:

®por—p

A clause is a disjunction of distinct literals:

®pVp3V prVpsV ps

A formula is in CNF (conjunctive normal form) if it
is a conjunction of clauses

(p1V =p3) A(p1VpsV —p2Vpr)A(psV —ps)

A formula is in £-CNF if each clause has exactly &
literals.

Theorem: The satisfiability problem for 2-CNF for-
mulas is in P.

Theorem: The satisfiability problem for 3-CNF for-
mulas in NP-complete.

Proof: It’s clearly in NP. To show that it’s NP-
hard, it suffices to show that the satisfiability of an

arbitrary formula ¢ can be reduced in polynomial to
the satisfiability of a 3-CNF formula ¢'.

17

Three steps:
Step 1:
e Write a binary parse tree for ¢,

o internal nodes are labeled with —, A, and V
o leaves are labeled with literals

o An internal node represents a subformula of ¢

o Introduce a new primitive proposition ¢ for
each internal node

o Write formula that says that ¢ characterizes
the formula at that node.

x If internal node is — and successor is labeled
by ¢/,
(gN=q)V(~gNg)
x If internal node is A and successors are ¢
and qo:

(@A@ Ag)V(mgA—(q1 Ag2))

e Let ' be the conjunction of these formulas.

o Not hard to show that ¢’ is satisfiable iff ¢ is
satisfiable

18

Step 2: Convert ¢’ to an equivalent CNF formula,
using various equivalences, where each clause has
at most 3 literals:

e Using Distribution Laws, (¢ A =¢') V (mg A ¢') is
equivalent to

(V-9 AN (V)N (=g V=g)AN(=dV{)

e Using Distribution Laws and DeMorgan’s Laws,
can do the same for other clauses.

e (Actually, every formxla is equivalent to a CNF
formula)

Step 3: Get an equi-satisfiable 3-CNF formula
e Replace a disjunct p; V py by

(P1Vp2Va)A(p1Vp2V —q)

e The new formula is satisfiable iff the original was.

19

