Representing Prefix Codes

Can represent a prefix code by a binary tree:

e cach path from the root to a leaf represents a code
word (for symbol in C, the original alphabet)

0 0010 = left, left, right, left

Fix a file and a tree T' corresponding to a prefix code.
How many bits does it take to encode the file?

e let f(c) be the frequency with which the character ¢
in alphabet C' occurs in the file

e Let dp(c) be the length of the codeword for ¢ (accord-
ing to T')

Then the cost of T' (number of bits used by T') is
B(T) = £ flc)dr(c)
ceC

It can be shown that optimal compression can be achieved
by using a prefix code.

HUFFMAN(C, f)

1 n«|C|

2 @« C [Q isa priority queue, sorted by frequency]
3 fori—1ton—1do

z «— ALLOCATE-NODE() [create a new node]
z +— EXTRACT MIN(Q)

y — EXTRACT MIN(Q)

leftjz] < x

right[z] <« y

9 fle) — flal+

10 INSERT(Q, 2) [replace z and y in @ by 2]

11 return EXTRACT-MIN(Q)

00 ~1 O Ut

After n — 1 steps, @ has exactly one element.

Running time: O(nlogn)

Constructing a Huffman Code

Assume that C is a set of characters and f describes the
frequency of the characters in C.

Huffman(C, f) constructs a tree whose leaves are labeled
by characters in C'

e The path from the root to the node is the code for
that chactacter

e The algorithm builds intermediate nodes in the tree
by “merging” two nodes and giving them a parent.

o if the cost of merging z and y is flz] + fly], it
chooses the cheapest nodes to merge

Huffman: Correctness

If ¢ and y are the characters in () with the lowest fre-
quency, their codewords agree except in the last bit (since
they have the same parent).

Lemma 1: If x and y are the two characters in C' with
the lowest frequency, there is an optimal prefix code in
which the codewords for x and y have the same length
and differ only in the last bit.

Proof: Suppose T is a tree representing an optimal pre-
fix code.

e Every interior node has two children
e If not, can shrink 7" to get a better code
Idea: modify T so that z and y are sibling leaves.
Let b and ¢ be sibling leaves of maximum depth.
e Suppose that f(b) < f(c) and f(z) < f(y).
e Switch b and x and switch ¢ and y in the tree to get

a better tree.

Bottom line: greedy merging is safe.

Lemma 2: If T represents the optimal prefix code for
(C, f), and y are characters in C' that are siblings in
T, and z is their parent. Let C' = C — {z,y} U{z}, and
suppose that f(z) = f(x)+ f(y). Then T" =T — {x,y}
represents an optimal prefix code for C".

Proof: First let’s show that

B(T) = B(T") + f(x) + f(y)
Since dr(z) = dr(y) = dp(2) + 1, we have

(2
B(T) = (Seecr—gz) f(0)dr(0)) + f(@)dr(z) + f(y)dr(y)

(Peecr—tzy f(e)dr(e)) + (f(2) + f(y)(dr(2) + 1)
= (Seec—1 f()dr(0)) + f(2))dr(2) + f(z) + f(y)
= B(T") + f(z) + f(y)

If there exists a better prefix code T for C’, add z and
y as children of z to get a better prefix code for C, with
cost B(T") + f(x) + f(y), by the same argument.

Theorem: HUFFMAN produces an optimal code.

Proof: By induction on the size of C, using Lemmas 1
and 2.

SY

Intrinsic Complexity

Computer scientists tries to characterize the intrinsic
complexity of a problem.

e How hard is sorting?

e How hard is multiplication?

e How hard is it to solve the 0-1 knapsack problem
Clearly the difficulty is a function of the input size.

e We can get an upper bound on the complexity by
giving an algorithm.

e We also try to prove lower bounds.

o They are supposed to hold for any algorithm that
solves a problem.

Big success story: sorting.
e O(nlogn) is an upper bound.

e There’s a matching ©(nlogn) lower bound for any
algorithm that uses only comparisons.

Back to the Knapsack Problem

Remember the 0-1 knapsack problem:
e there are n items
e [tem 7 has value v; and weight w;.

You can put at most W pounds into a knapsack. Which
items do you take?

e For each item, you either take it or leave it (0-1)

e You can’t solve it using a greedy algorithm

e There is a dynamic programming algorithm that runs
in time nW.

Is there an algorithm whose running time depends only
on n, not on W7

e Sure: try every possible subsets of items, see if its
weight is < W if so, figure out its value.

e Choose the subset that gives the highest value.
There are 2" subsets, so this takes time O(2").
e Can we do better?

We don’t think so .. .; this is an NP-complete problem.

NP-Completeness

An even bigger success story: NP-completeness.
e Many important problems are NP complete

o Scheduling, 0-1 knapsack, travelling salesman prob-
lem, thousands of others ...

e They can be solved in nondeterministic polynomial
time
o It’s hard to guess an answer (there are too many
choices)
o It’s easy to verify that an answer is correct

e They are the hardest problems among those that can
be solved in nondeterminstic polynomial time.

o All NP-complete problems are equally hard.

e If any one can be solved in polynomial time, they all
can

e If you can prove that a problem is NP-complete, it’s
probably not worth trying to come up with an efficient
algorithm

o you should probably start looking for good approx-
imation algorithms.

Polynomial Time

Why the focus on polynomial time (PTIME, or just P)
in the literature?

e PTIME has generally been identified with “easy”:

o O(n*") doesn’t seem so easy but ...
o Almost almost practical problems that have PTIME
solutions end up having solution in O(n?) or better
e PTIME is a much more robust notion than, say, O(n?).
o An algorithm that runs in O(n?) on one architec-
ture might run in O(n®) on another
*x How are, say, array operations implemented?

o Is n the number of vertices + edges or the number
of bits required to describe them?

* This could make a difference between O(n?) and
O(n*logn).
o All these subtleties disappear with PTIME
e Polynomials are closed under addition, multiplication,

and composition, so the combination of PTIME prob-
lems is typically PTIME

Decision Problems vs. Search
Problems

Many problems of interest are search problems.
e Find an object with certain properties

o find a Hamiltonian path,

o find an optimal solution to the 0-1 knapsack prob-
lem,

o find a shortest path

For technical reasons, complexity theory focuses on deci-
sion problems.

e Problems with yes/no answers

o Does this graph have a Hamiltonian path?

o Is there a way of filling the knapsack that has value
at least V.

o Is there a path from s to ¢ of length less than & in
this graph.
Can typically recast a decision problem as a search prob-
lem
e E.g . convert optimization problem to asking whether
a solution with value at least k exists.

11

Hamiltonian Paths vs. Eulerian Paths

Given a graph, an FEulerian path traverses every edge
exactly once:

e This is the street-sweeper problem

e Can you sweep all the streets without going over any
street twice

A Hamiltonian path visits every node exactly once
e This is the traveling salesman problem

An Eulerian/Hamiltonian cycle is an Eulerian/Hamiltonian
path that starts and ends at the same vertex.

Deciding if a graph has an Eulerian path is easy:

e It has an Eulerian path iff either all edges have even
degree or exactly two edges have odd degree.

e It has an Eulerian cycle iff all edges have even degree.
e If a graph has an Eulerian path, it’s easy to find it.

The problem of finding a Hamiltonian path/cycle is NP-
complete.

10

If we can solve the search problem, we can solve the cor-
responding decision problem.

e That means if we can prove the decision problem is
hard, the search problem is also hard.

Conversely, solving the decision problem means we can
usually solve the search problem quickly:

e E.g. in an optimization problem, use binary search to
find the optimal solution.

Formal Language Theory

We can recast all decision problems as the question of
deciding whether a given string is in a language (set of
strings).

An alphabet is a finite set of symbols (e.g., 0, 1).

If 3 is an alphabet, ¥* consists of all finite strings that
use the symbols in the alphabet.

o Eg., {0,1}" = {¢,0,1,00,01,10,11,000,...}
e ¢ denotes the empty string
A language (over) is a subset of X%,

If Y = {ay,...,a;}, can convert any string in ¥* to a
string in {0, 1}* with a blowup of log(k):
e Use a fixed-length code:

o every symbol in ¥ becomes a string of Os and 1s of
length log(k).

As far as PTIME is concerned, there is no loss of gener-
ality in looking at languages in {0, 1}*.

13

Encoding problems as languages

E.g.: Hamiltonian paths as a language problem
First step: describe a graph as a string in {0, 1}*.

e Assume the vertices are in {1,...,n}
e First write description in the language {0, 1, $}*:
o Description is string n$i1$7:$. .. $¢,,$7,,%
o n is #nodes (written in binary)
o i;$7x$ describes edge (i, jx)
* write i, 5 in binary
 the $ is used to separate vertices (so you know

when the encoding of one vertex ends and the
next begins

e Then convert the string to a string in {0, 1}*.

e Let Ly consists of all graphs with Hamiltonian paths
under this encoding

e Problem: decide if a string z is in Ly

The problem of deciding whether a graph has a Hamil-
tonian path is equivalent to the problem of deciding which
strings in {0, 1}* represent graphs with Hamiltonian paths
(under this encoding).

Operations on languages:
e L UL,
e . =%* — L (complement)
e LiNLy
o concatenation: LiLo = {x129 : 1 € L1, 12 € Lo}
eL*=eULUL*UL*U...
Examples: If Ly = {0}, Ly = {1}, then
o L,L, = {01}
o LiULy—{0,1}
o (L Ly)* = {e,01,0101,010101,. ..}
o (LyU Ly =5~

14

Another example: the 0-1 knapsack.
e Now the input consists of

o an upper bound on the weight W that the knap-
sack can handle

o a value V' (you want to know if you can carry more
than $V worth of items)

o a sequence of (weight, value) pairs (object ¢ has
weight w; and value v;

e Can encode this as a string WSV wv:$. .. $w,$v,

o Can assume that W,V wy, ..., w,,vq,...,v, are
written in binary.

e Then convert from {0,1,$}* to {0, 1}*.

16

Acceptance vs. Decision

Key point: All decision problems can be viewed as decid-
ing if a string is in an appropriate language.
e There may be more than one way of representing a

language as a set of strings.

o Most reasonable representations are polynomially
related

Focus on algorithms A that take strings as input and
return 0 or 1.

Let L(A) = {z : A(x) = 1}.
e L(A) is the language accepted by A.

A accepts in PTIME if there is a k such that if A(z) =1,
then A halts in time O(|x|¥).

e all bets are if A(z) =0.

e |z| is the length of the string
A decides in PTIME if there is a k if A halts in time
O(|z[*) for all inputs.

L is accepted/decided in PTIME if there is an algorithm
Asuch that L(A) = L and A accepts/decides in PTIME.

17

PTIME verification

Deciding if a graph has a Hamiltonian path seems hard.

Verifying that a given sequence of nodes is a Hamiltonian
path is easy.
e NP consists of those languages that can be verified
easily.
e [t’s much easier to check that a proof is correct than

to generate a proof.

Formally, a two-argument algorithm A(z, y) verifies L if
L = {z : exists y such that A(z,y) = 1}.

e A verifies L if for each x € L, there is a y that A can
use to prove that = € L.

Examples:
e In the case of Hamiltonian paths, z is an encoding of
the graph, and y as a Hamiltonian path.

o it’s easy to verify that y is/is not a Hamiltonian
path for

e In the case of the 0-1 knapsack problem, x is an en-
coding of a knapsack problem and ¥ is a choice of
items.

19

Theorem: L is accepted in in PTIME iff L is decided
in PTIME.

Proof: Clearly if L is decided in PTIME then it is ac-
cepted in PTIME.

Conversely, suppose A accepts L in PTIME. That means
that if A accepts x, it does so in time c|z|* for some c.
Construct A’ as follows:

e Run A, and keep track of the number of steps you've
run.

e if, on input 2, A has run for ¢|z|* and hasn’t halted,
output 0.

Given A and c, k, can construct A’. But the proof doesn’t
require that you are given A, ¢, and k. It suffices to know
that they exist.

18

A language L is in NP (nondeterministic polynomial
time) if there is a two-input polynomial time algorithm
A and a constant ¢ such that

x : there exists y such that |y| = O(|z| and

L =A{
Alz,y) =1}
o the certificate for has to be polynomial in the size
of x
Examples of problems in NP:
e Hamiltonian path/Hamiltonian cycle
e 0-1 knapsack

20

