Matrix Chain Multiplication

The input to the following algorithm is p = (po, - .., pn),
where p;_1 X p; is the dimension of A;.

e s[i, j] is the best place to split the computation
of A; j to A; rArs1.;.

MATRIX- CHAIN-ORDER(p)

1 n « lengthlp] — 1
2 fori:«<1tondo
3 mli, j] < 0
4 forl—2tondo

5 fori—1ton—-1+1do
6 je—i+1-1

7 mi, j] — oo

8 for k—itoj—1do

9 q — m[i, k] +m[k + 1, j] + pi_1prp;
10 if ¢ < mJi, j]

11 then m[i, j] — ¢

12 s[i, j] — k

13 return m and s

Running time: O(n?)
e Key point: the same information (m[i,j]) gets
reused over and over.

Longest Common Subsequence

Given two sequences, we want to find there longest
common subsequence. This is a problem that comes
up, for example, in gene sequencing (if we want to
compare to genomes).

Formally, if Z = (21, ..., 2x) is a subsequence of X =
(21,...,Zm) if there exist iy,...,7; such that iy <
... <ipand z; = Ti;.
Example: The longest common subsequence of
(A,A,B,C,A,A,D,A)and (A,C,B,C,A,B,D,C, A)
is (A,B,C,A, D, A).

e There can be at most 3 A’s in the Ics, so this is

the best we can do.

The brute force approach to finding LCS of X and
Y is to consider all subsequences of X and see which
ones are subsequences of Y.

e The number of subsequences of X is exponential
in length(X).

We can do better using dynamic programming.

Computing an optimal solution

MATRIX-CHAIN-ORDER computes the best place to
split and the optimal number of scalar multiplica-
tions.

e From s[i, j], it’s easy to compute how to multiply

M-CHAIN-MULTIPLY(A, ,1, j)

1 ifj>1

2 then X — M-CHAIN-MULTIPLY (A, s, 2, 8[4, j])

3 Y — M-CuHAIN-MULTIPLY(A, s, s[Z, j] + 1,7)
4 return MaTRIX-MULTIPLY(X,Y)

5 else return A;

Get the right answer by calling M-CHAIN-MULTIPLY (A4, s,1,n)

Characterizing an LCS

Given a sequence X = (z1,...,Tn), if ¢ < m, let
Xz' = (mla R 71:2')‘

Theorem: Suppose that Z = (z1,...,2;) is an lcs
for X = (z1,...,2p) and Y = (y1,...,Yn)-

1. If z,,, = y,, then 2z = z,, = ¥, and Z;_; is an lcs
for X,,,_1 and Y,,_1.

2. If ¢, # yn and z;, # Ty, then Z is an lcs for X,
and Y.

3.If ¢, # vy, and z; # Yy, then Z is an lcs for X
and Y, 1.

Therefore, an lcs for X and Y contains within it an
Ics for two smaller sequences.
e We can find LCS(X,Y") by first finding LCS(X;, Y))
for all the prefixes of X and Y.

Solving LCS Recursively

Let c[i, j] the length of an lcs of X; and Y.

0 ifi=0orj=0
cli,jl={ci—1,j—-1]+1 ifi,j >0,z =y,
max(c[t — 1,7],¢c[4,j —1]) if 4,5 > 0, x # y;

LCS-LENGTH(X,Y)

n «— length[X]
m «— length[Y]
for : — 1 tom do

c[i,0] <0
for j — 0 ton do

c[0,j] <0
for i — 1 tom do

for j — 1tondo

then c[i,j] —c[i—1,j —1]+1

11 else c[i, j] « max(c[i — 1,j],¢[¢,5 — 1])
12 return c

© 00 O Ot i Wi+

—
o

Running time (and space): O(nm)

Greedy Algorithms

One approach to an optimization problem: make the
choice that currently looks best.

e Sometimes this greedy approach is a bad idea
o you can get caught in a trap
o Other times it works remarkably well.

Kruskal’s algorithm for MST can be viewed as a
greedy algorithm:

e Choose the edge of least weight that buys you
something

So can Prim’s algorithm:

e Choose the edge of least weight that extends the
current tree and buys you something.

And so can Dijkstra’s algorithm:

e Choose the node not yet chosen which is closest
to the source.

Printing out an LCS

PrINT-LCS(c, X, ,7)
ifi=0o0rj=0
then return
if ¢[i — 1, 7] = ¢[i,]
then PRINT-LCS(c, X,7—1,7)
else if c[i,j — 1] = ¢[i,]
then PrINT-LCS(c, X,4,5 — 1)
else PRINT-LCS(¢, X,i — 1,5 — 1)
print z;

0~ OO WN -

Activity Selection

Suppose that we have a set S = {1,...,n} of pro-
posed activities that need to use the same resource

e only one can be active at a time
o example: scheduling classes in a lecture hall
o Activity 7 has a start time s; and a finish time f;.

Problem: choose the maximum set of mutually com-
patible activities

e Don’t want activities whose start-finish times over-
lap

Basic idea: keep choosing an activity as long as it’s
compatible with the ones you’ve already chosen.

e The actual algorithm suggests a particular way
to choose.

Order the activities by increasing finish time:
LH<h<...<[fa
e This pre-processing step takes time O(nlogn)

Assume the algorithm gets as input the sequence s
of start times and the sequence f of finish times (in
sorted order):

GREEDY-ACTIVITY-SELECTOR(S, f)

1 n « length[s]

2 A< {1} [A consists of selected activities]
3 j«1 [7 is the last activity put into A]
4 for j «— 2tondo

5 if s; > f; [if it’s safe to add i to A ...]
6 then A — AU

7 Jj—1

8 return A

Clearly this gives a set of compatible activities.

It’s also efficient:
e After preprocesesing, run in time O(n).

But why is it correct?

If A is a maximum set of mutually compatible activ-
itiesin S = {1,...,n} and 1 € A, then A — {1} is
a maximum set of mutually compatible activities in
S'={ieS:s>fi}

e S’ consists of activities that start after 1 ends.

Now by induction, the algorithm produces a maxi-
mum set on S’

e But the action of algorithm on S’ is exactly the
same as the action of the algorithm on S after
choosing 1.

11

Theorem: GREEDY-ACTIVITY-SELECTOR chooses
a maximum set of mutually compatible activities.

Proof: By strong induction on n, the number of
activies in S.

Base case: clearly OK if S = 1.

Inductive step: First show that there is a maximum
set that includes activity 1 (the one with earliest
finish time).

Let A be a maximum set and let k be the activity in
A with earliest finish time.

o If k =1, we're done.

o If not, let B = A — {k} U{1}. The activities in
B must be mutually compatible

o activity 1 can’t overlap with anything, since
its finish time is earlier than k’s

e Thus, B is a maximum set that includes 1.

10

Greedy vs. Dynamic Programming

A greedy algorithm works only if making the greedy
choice gives an optimal solution:

e That works in some cases, but not always.
e The hard part is often showing that it works
Example:
e The 0-1 knapsack problem: there are n items
o Item ¢ has value v; and weight w;.

You can put at most W pounds into a knapsack.
Which items do you take?

o For each item, you either take it or leave it

(0-1)

e The fractional knapsack problem: same setup,
but now you can take part of an item.

o This means you have more flexibility
Key point:

e There’s a greedy algorithm for the fractional knap-
sack problem, but not for the 0-1 knapsack prob-
lem

12

For the fractional knapsack problem:
e First sort the items by value/pound (v;/w;)

e Pick the most valuable items that you can fit
in, then the next one, etc., until there’s no more
room.

e Then put in as much of the last item as you can
to get to weight W.

o This is OK since you can take fractions of an
item.

This approach doesn’t work for the 0-1 knapsack
problem:

e Suppose there are three items and the knapsack
can hold 50 pounds:

o Item 1 weighs 10 lb. and is worth $60
o Item 2 weighs 20 lb. and is worth $100
o Item 3 weighs 30 lb. and is worth $120

e [tem 1 is the most valuable, but the optimal so-
lution is {2, 3}.

You can use dynamic programming to solve the 0-1
knapsack problem.

13

Prefix Code

If one code is a prefix of another, then decoding is
harder

e if e is 0 and a is 01, when you see 0, is it an e or
the beginning of an a.

It is best to assume a prefiz code
¢ no codeword is the prefix of another codeword.
Decoding is simple with a prefix code:

e Keep running along string until you have a com-
plete codeword, and continue

o Note: this is a greedy decoding algorithm
e E.g.. suppose e =0, a =10, b =110
o then 00110100 = eebae

Huffman Codes

Suppose you have a large file, where only 6 different
characters appear

e Not all characters appear equally often

e How do we represent the characters so as to get
greatest compression?

o Compression is critical in transmitting data
over a modem

o There are *lots* of coding algorithms

Assume each character is represented as a binary
string. Example:

a=000000 b= 000001
»=011010 ,= 011011

Is this a good encoding?

e This is a fized-length code: all characters encoded
by a 6-bit code word

e It’s a better idea to use a wvariable-length code

e Greater frequency = shorter code word

o Modern coding algorithms (based on Ziv-Lempel)

adaptively choose length of code word

14

