Augmenting Paths

So how do we find augmenting paths?

Given a flow network G and a flow f, an augmenting
path p for f is just a path from s to ¢t in G;.

e By definition, each edge (u,v) in Gy admits some
additional positive net flow from u to v.

What’s the maximum flow that you can push through
an augmenting path p?

e Depends on the edge that admits the least flow.
o A chain is only as strong as its weakest link
e Define the residual capacity of p:
cr(p) = min{cs(u,v) : (u,v) on p}.

Lemma: If G is a flow network, f is a flow in G,
and p is an augmenting path in G, define

ce(p) if (u,v) ison p
fr =1 —cf(p) if (v,u) is on p
0 otherwise.
Then f, is a flow in Gy and |f,| = c¢(p) > 0.

Key point f + f, is a flow in G, and |f + f,| =
LI+ 1fpl > 111

Cuts in low networks

We can use the Ford-Fulkerson method by starting
with the a flow of 0 on every node, computing an
augmenting path, and updating the flow.

e We keep going until there are no more augment-
ing paths.

We need to prove that we then have the maximum
flow.

To prove this, we use cuts:

e Given a flow network G = (V| F), a cut consists
of a partition S and T'=V — S such that s € S
andt € T

o like a cut in MST, except that s € Sandt € T,
and now the network is directed.

So why do we care about cuts?

Time Out: Working with Flows

It makes life easier if we let the flow take sets as
arguments.

f(Xa Y) = erXZerf(xa y)
This simplifies equations:
(X, X) = 0:
o Proof: f(X,X) =3, vexf(z,2') =35, pex(f(z,2')+
fl@',z)) =0
f(X,Y) — _f(YaX)
e Proof: See homework.

If XNY =0, then:
f(XUY,7Z)=f(X,2)+ f(Y,Z)
(X, Yuz)=fX,Y)+ [, 2)

Why we care about cuts

o If f is a flow, the flow of f across the cut is
f(S,T).
e The capacity of the cut is ¢(5,T).

Lemma: If f is a flow in G with source s and sink

t, and (S,T) is a cut of G, then f(S5,T) = |f]|.
e The flow of f across the cut = the value of f
Proof:

f(SaT) :f(S,V) —f(S,S)
— f(SvV)
= f(s,V)+ f(S —s,V)
— (va)
= |/l

Corollary: If (S, T) is a cut of G, then | f| < ¢(S,T).
Proof:

|f| — f(Sa T) — EuES,veTf(u: U) < ZUGS,UETC(U’7 ’U) = C(S, T)

Key point: If |f| = ¢(S,T) for any cut (S,T), then

f must be a maximum flow.

4

Max-flow min-cut Theorem: If f is a flow in
G with source s and sink ¢, then the following are
equivalent:

1. f is a maximum flow

2. Gy contains no augmenting paths

3. |f| = ¢(S,T) for some cut (S,T) of G.

Proof: (1) = (2): if Gy has an augmenting path p,
then |f| 4+ |f,| > |f|, so f can’t be a maximum flow.
(2) = (3): Suppose that Gy has no augmenting path.

We want to show that |f| = ¢(S,T) for some cut
(S,T). Define

S ={v €V : there is a path from s to v in G}.

Clearly t € T =V — S (otherwise there would be an
augmenting path in Gy). Thus, (5,7) is a cut. If
u € S and v € T, then f(u,v) = c(u,v) (otherwise
there would be an edge (u,v) in Gy, and v would be

in S). Therefore, |f| = f(S,T) = ¢(S,T).

(3) = (1): If |f| = ¢(S,T), we’'ve already seen that
f must be a maximum flow.

Key point: If f is a flow in G and G has no aug-
menting paths, then f is a maximum flow in G.

5

Ford-Fulkerson again

FORD-FULKERSON(G, s, 1)
1 for each edge (u,v) € E|G]

2 do flu,v] < 0

3 flv,u] <0

4 while there exists a path p from s to ¢ in Gy

5 do c¢f(p) = min{cs(u,v) : (u,v) is on p}
6 for each edge (u,v) in p

7 do flu,v] < flu,v] + cf(p)

g Flovu] — floru] — es(p)

Comments:
e Lines 1-3 initialize f

e Don’t need to set f[u,v] < 0 unless one of (u, v), (v, u)
is in E, since we we never touch these edges.

Problems:

e How do we check whether there is a path from s
totin Gy

o Could use, e.g., BF'S or DF'S.

e Which path do we choose if there is more than
one?

e How often do we go through the loop?
e Do we terminate?

o If capacities are integers, each step gives an
improvement of at least one, so we must ter-
minate.

o This means that the running time is O(E|f*|),
where f* is the maximum flow.

This is OK if |f*| is small, can be pretty horrible if
it’s not:

Can we do better by choosing a better augmenting
path?

Edmonds-Karp Algorithm

Use BF'S to find the shortest augmenting path.
e Each edge counts as 1.

Claim: The Edmonds-Karp algorithm runs in time
O(V E?).

e We’ll skip the proof (see pp. 597-598).

e The hard part is showing that using BFS guaran-
tees that we do no more than O(V E) iterations.

e It’s easy to see that each iteration takes at most

O(E).

o BFS takes time O(V + E), but V < E — 1,
since each vertex is on a path from s to ¢ (so
each vertex other than ¢ must have an outgoing
edge).

Can find fancier algoriths that run in time O(V?)

(Section 27.5) and even O(VE1g(V?/E)) (the cur-
rent champ).

Bipartite Matching

Consider a graph partitioned into two sets A and B:

e men and women
e task and machine/person to perform it

e lots of other examples

Model this using a bipartite graph G = (V, E) where
oV =AUB
e edges go between nodes in A and nodes in B

o there is an edge between a job and a machine
if the machine can perform the job.
o One machine can perform several jobs
o One job can be performed by several machines
A matching is a subset M of edges in E such that
each vertex has at most one edge in M incident on
it.
e FEverything is matched wtih at most one other
thing.
A maximum matching has as many edges as possible.

e As many jobs as possible are done; as many ma-
chines as possible are working

9

Maximum matching and maximum
fow

We can construct a flow network that corresponds
to a bipartite graph G = (V, E)

e Add two vertices: a source s and a sink ¢.

e Add an edge with capacity 1 from s to every node
in A.

e Add an edge with capacity 1 from every node in
B to t.

e Give each edge in E capacity 1.
Call the flow network G’

10

Lemma: If M is a matching in GG, then there is an
integer-valued flow f in G' with |f| = |M|. Con-
versely, if there is an integer-valued flow f in G’,
then there is a matching M in G with |f| = |M|.

Proof: Suppose that M is a matching. Define a
flow f such that if u € A, v € B, and (u,v) € M,
then f(s,u) = f(u0) = f(0,t) = 1 and f(u,s) =
f(v,u) = f(t,v) = —1; f(u',v") = 0 otherwise. It is
easy to see that |f| = M.
Conversely, given f, let
M = {(u,v):u € A,v e B, f(u,v) > 0}.

Why is M a matching?

e For u € A, at most 1 unit of flow comes in (from

s), so at most 1 unit can go out (conservation).

e For v € B, at most one unit can go out (to t) so
at most one unit can come in.

Why is |M| = | f|?
o (AU {s}, BU{t}) is a cut of G', so
[fI = FIAU{s}, BU{t}) = Xupyem f(u,v) = [M].
e Since f is integer-valued and all capacities are at
most 1, f(u,v) =1 for (u,v) € M and f(u,v) =0
for (u,v) ¢ M. (Can’t have f(u,v) < 0, since
f(v,u) < c(v,u) =0.)

11

This means that the size of the maximum matching
is the same as the largest value for an integer-valued
flow.

e So how do we construct integer-valued flows?
e We get one using Ford Fulkerson!

Lemma: Since all the capacities in G’ are integer-
valued, the maximum flow in G’ is too.

Proof: By induction can show that all the flows in
Ford-Fulkerson are integer-valued at every step of
the way.

Bottom line: size of maximum matching = value of
maximum flow.

There are better methods for maximum bipartite
matching:

e Hopcroft and Karp have a O(v/V E) algorithm

12

Dynamic Programming

Dynamic programming is a technique for designing
algorithms that’s used in optimization problems.

e many possible solutions
e cach solution has a value (payoff)

e we want to find the optimal solution (the one with
the best payoff)

We can apply dynamic programming to optimization
problems if, as choices are made, subproblems with
a similar structure arise.

Key steps in using dynamic programming:
1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solu-
tion.

3. Compute the value of an optimal solution in a
bottom-up fashion.

4. Construct the optimal solution from the com-
puted information.

Seems pretty mysterious until you see examples ...

13

Matrix-chain multiplication

Suppose we want to multiply three matrices: A; AsAs.
Matrix multiplication is associative, so we have two
ways of doing this:

(AlAQ)Ag or Al(AQAg)
Both ways give us the same answer. Which is better?

e How much does it cost to multiply an n X m ma-
trix by an m X k matrix?

on X m X k multiplications

Why this can matter:
e Suppose that A; is 10 x 100, As is 100 x 5, and
Az is 5 x 100.
o A1 A5 uses 10 X 100 x 5 = 5000 multiplications

o BA3 uses 10 x 5 x 100 = 5000 multiplications,
where B = A; X Ay (a 10 X 5 matrix)

% (A1A2)As uses 10,000 mults altogether
o AgAs uses 100 x 5 x 100 = 50000 mults

o A;C uses 10 x 100 x 100 = 100,000 mults,
where C' = A3A3 (a 100 x 100 matrix)

x A1(AzA;3) uses 150,000 mults
That’s a huge difference!

14

How Many Choices Are There?

With 2 matrices: 1 choice.

With 3 matrices: 2 choices

(AlAQ)Ag or A1 (A2A3)

With 4 matrices: 5 chioices
(A1((A243)As))
(A1(A2(A435A4)))
((A142)(A3A4))
((A142)A3)As)
((A1(A243))Aq)

In general, if P(n) is the number of choices with n
matrices,

e Choose k; figure out all the ways of grouping
Aq... A and all the ways of grouping A1 ... A,:
P(k)P(n — k)

e Thus, P(n) = ={Z{ P(k)P(n — k).
o It can be shown that P(n) = Q(4"/n?/?)

Bottom line: P(n) is exponential in n; you can’t try
all solutions to pick the best one.

15

Matrix Multiplication with Dynamic
Programming

Notation:
o A; ; be the result of multiplying A4;... A;.
o A; is a p;_1 X p; matrix.

e m|i, j] is the number of multiplications involved
in the cheapest algorithm for computing A; ;.

Clearly m|i, 7] = 0.
Claim: If 5 > ¢, then

mli, j| = Z,1r§r}€i£1j(m[i, k] + mlk + 1, 7] + pi—1pkDpj)
Key point:

e This tells us the structure of the optimal solution.

e We get a recursive definition of the optimal solu-
tion, obtained by solving similar subproblems.

16

Could write a naive recursive algorithm based on the
claim:

e Problem: this still takes exponential time.
A better way:
e Write a table whose entries are m|t, j]

o There are only n?/2 entries in the table.

o We compute them inductively, starting with
all entries where 1 — 3 = 0, then 1 — 3 = 1,
1—7 =2, ...

17

